Using Waste Plastics as Asphalt Modifier: A Review
Abstract
:1. Introduction
1.1. Environmental Problems Caused by Plastic Waste
1.2. The Benefits of Using Waste Plastic in Asphalt
2. Waste Plastic and Sources
3. The Use of Waste Plastics in Asphalt
3.1. Forms of Waste Plastics Used in Asphalt
3.2. Approaches to Incorporating Waste Plastics into Asphalt
3.3. Single and Composite Modification
3.3.1. Single Modification
- (1)
- Waste LDPE
- (2)
- Waste HDPE
- (3)
- Waste PP
- (4)
- Waste PVC
- (5)
- Waste PET
- (6)
- Waste PS
- (7)
- Waste EVA
- (8)
- Waste ABS
- (9)
- Waste PU
3.3.2. Composite Modification
4. Factors Affecting Properties of Waste Plastic-Modified Asphalt
4.1. Waste Plastic Properties
4.2. Asphalt Binder Properties
4.3. Waste Plastic Dosage
4.4. Blending Conditions
4.5. Pretreatment Methods for Waste Plastic
4.5.1. Physical Method
4.5.2. Chemical Method
5. Engineering Properties, Environmental Concerns and Practical Engineering Applications of Waste Plastic Asphalt Mixtures
5.1. Engineering Properties
5.2. Environmental Concerns
5.3. Practical Engineering Applications
- (1)
- India
- (2)
- UK
- (3)
- USA
- (4)
- Africa
- (5)
- The Netherlands
- (6)
- Mexico
6. Challenges of Using Waste Plastics with Asphalt
6.1. Low-Temperature Performance
6.2. Storage Stability
6.3. Microcosmic Modification Mechanism
6.4. Laboratory Operational Problems
7. Conclusions
8. Future Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, G.; Zhu, Y.; Zhang, Y.; Zhang, Y. Preparation of storage stable LDPE/SBS Blend-modified Asphalt. J. Highw. Transp. Res. Dev. 2002, 19, 28–31. (In Chinese) [Google Scholar]
- Plastics Europe. Available online: https://www.plasticseurope.org/en/resources/market-data (accessed on 28 July 2021).
- National Bureau of Statistics. Available online: https://data.stats.gov.cn/easyquery.htm?cn=C01 (accessed on 28 July 2021).
- Environmental Protection Agency of the United States. Plastic: Material-Specific Data. Available online: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data (accessed on 28 July 2021).
- Biber, N.F.A.; Foggo, A.; Thompson, R.C. Characterising the deterioration of different plastics in air and seawater. Mar. Pollut. Bull. 2019, 141, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Y.; Huang, B.; Chen, Z.; Zhong, M.; Wang, W.; Liu, X.; Fan, Y.N.; Hu, W. Atmospheric phthalate pollution in plastic agricultural greenhouses in Shaanxi Province, China. Environ. Pollut. 2021, 269, 116096. [Google Scholar] [CrossRef]
- Brasileiro, L.; Moreno-Navarro, F.; Tauste-Martínez, R.; Matos, J.; Rubio-Gámez, M. Reclaimed Polymers as Asphalt Binder Modifiers for More Sustainable Roads: A Review. Sustainability 2019, 11, 646. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhang, M.; Rong, H.; Zhang, X.; He, L.; Han, P.; Tong, M. Transport and deposition of plastic particles in porous media during seawater intrusion and groundwater-seawater displacement processes. Sci. Total Environ. 2021, 781, 146752. [Google Scholar] [CrossRef]
- Litchfield, S.G.; Schulz, K.G.; Kelaher, B.P. The influence of plastic pollution and ocean change on detrital decomposition. Mar. Pollut. Bull. 2020, 158, 111354. [Google Scholar] [CrossRef]
- Qiu, Z.; Zhao, S.; Feng, X.; He, Y. Transfer learning method for plastic pollution evaluation in soil using NIR sensor. Sci. Total Environ. 2020, 740, 140118. [Google Scholar] [CrossRef]
- Ding, Y.; Zou, X.; Wang, C.; Feng, Z.; Wang, Y.; Fan, Q.; Chen, H. The abundance and characteristics of atmospheric microplastic deposition in the northwestern South China Sea in the fall. Atmos. Environ. 2021, 253, 118389. [Google Scholar] [CrossRef]
- Prata, J.C.; da Costa, J.P.; Lopes, I.; Andrady, A.L.; Duarte, A.C.; Rocha-Santos, T. A One Health perspective of the impacts of microplastics on animal, human and environmental health. Sci. Total Environ. 2021, 777, 146094. [Google Scholar] [CrossRef]
- Wang, M.H.; He, Y.; Sen, B. Research and management of plastic pollution in coastal environments of China. Environ. Pollut. 2019, 248, 898–905. [Google Scholar] [CrossRef]
- Okan, M.; Aydin, H.M.; Barsbay, M. Current approaches to waste polymer utilization and minimization: A review. J. Chem. Technol. Biotechnol. 2019, 94, 8–21. [Google Scholar] [CrossRef] [Green Version]
- Shanghai Resource Recycling Trade Association. Available online: http://www.sh-recycle.org/articledetail.asp?id=4074 (accessed on 29 July 2021).
- Chen, Y.; Awasthi, A.K.; Wei, F.; Tan, Q.; Li, J. Single-use plastics: Production, usage, disposal, and adverse impacts. Sci. Total Environ. 2021, 752, 141772. [Google Scholar] [CrossRef]
- Ministry of Transport of China. 2019 Statistical Bulletin on the Development of the Transport Industry; National Bereau of Statistics of China: Beijing, China, 2020. Available online: http://www.stats.gov.cn/tjsj/ndsj/2019/indexeh.htm (accessed on 22 December 2021).
- Chen, S.; Che, T.; Mohseni, A.; Azari, H.; Heiden, P.A.; You, Z. Preliminary study of modified asphalt binders with thermoplastics: The Rheology properties and interfacial adhesion between thermoplastics and asphalt binder. Constr. Build. Mater. 2021, 301, 124373. [Google Scholar] [CrossRef]
- Ragab, A.A.; Farag, R.K.; Kandil, U.F.; El-Shafie, M.; Saleh, A.M.M.; El-Kafrawy, A.F. Thermo-mechanical properties improvement of asphalt binder by using methylmethacrylate/ethylene glycol dimethacrylate. Egypt. J. Pet. 2016, 25, 397–407. [Google Scholar] [CrossRef] [Green Version]
- Kalantar, Z.N.; Karim, M.R.; Mahrez, A. A review of using waste and virgin polymer in pavement. Constr. Build. Mater. 2012, 33, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Wang, H.; Chen, J.; Meng, X.; You, Z. Laboratory evaluation on comprehensive performance of polyurethane rubber particle mixture. Constr. Build. Mater. 2019, 224, 29–39. [Google Scholar] [CrossRef]
- Mashaan, N.; Chegenizadeh, A.; Nikraz, H. Laboratory Properties of Waste PET Plastic-Modified Asphalt Mixes. Recycling 2021, 6, 49. [Google Scholar] [CrossRef]
- Zhu, J.; Birgisson, B.; Kringos, N. Polymer modification of bitumen: Advances and challenges. Eur. Polym. J. 2014, 54, 18–38. [Google Scholar] [CrossRef] [Green Version]
- Jamshidi, A.; White, G. Use of Recyclable Materials in Pavement Construction for Environmental Sustaionability, Proceedings of the Eighteenth Annual International Conference on Pavement Engineering, Liverpool, UK, 27–28 February 2019; Asphalt Reinforcement Services: Liverpool, UK, 2019. [Google Scholar]
- Costa, L.M.B.; Silva, H.M.R.D.; Oliveira, J.R.M.; Fernandes, S.R.M. Incorporation of Waste Plastic in Asphalt Binders to Improve their Performance in the Pavement. Int. J. Pavement Res. Technol. 2013, 6, 457–464. [Google Scholar]
- Joohari, I.B.; Giustozzi, F. Chemical and high-temperature rheological properties of recycled plastics-polymer modified hybrid bitumen. J. Clean. Prod. 2020, 276, 123064. [Google Scholar] [CrossRef]
- Mashaan, N.S.; Chegenizadeh, A.; Nikraz, H.; Rezagholilou, A. Investigating the engineering properties of asphalt binder modified with waste plastic polymer. Eng. J. 2021, 12, 1569–1574. [Google Scholar] [CrossRef]
- Nikolaides, A.F.; Manthos, E. Bituminous Mixtures and Pavements VII, 1st ed.; CRC Press: Thessaloniki, Greece, 2019. [Google Scholar]
- Hariadi, D.; Saleh, S.M.; Anwar Yamin, R.; Aprilia, S. Utilization of LDPE plastic waste on the quality of pyrolysis oil as an asphalt solvent alternative. Therm. Sci. Eng. Prog. 2021, 23, 100872. [Google Scholar] [CrossRef]
- Appiah, J.K.; Berko-Boateng, V.N.; Tagbor, T.A. Use of waste plastic materials for road construction in Ghana. Case Stud. Constr. Mater. 2017, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Hinislioglu, S.; Agar, E. Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix. Mater. Lett. 2004, 58, 267–271. [Google Scholar] [CrossRef]
- Vila-Cortavitarte, M.; Lastra-González, P.; Calzada-Pérez, M.Á.; Indacoechea-Vega, I. Analysis of the influence of using recycled polystyrene as a substitute for bitumen in the behaviour of asphalt concrete mixtures. J. Clean. Prod. 2018, 170, 1279–1287. [Google Scholar] [CrossRef]
- Razali, M.N.; Aziz, M.A.A.; Jamin, N.F.M.; Salehan, N.A.M. Modification of bitumen using polyacrylic wig waste. AIP Conf. Proc. 2018, 1930, 020051. [Google Scholar]
- Abdel-Goad, M.A.H. Waste polyvinyl chloride-modified bitumen. J. Appl. Polym. Sci. 2006, 101, 1501–1505. [Google Scholar] [CrossRef]
- Behl, A.; Sharma, G.; Kumar, G. A sustainable approach: Utilization of waste PVC in asphalting of roads. Constr. Build. Mater. 2014, 54, 113–117. [Google Scholar] [CrossRef]
- Costa, L.M.B.; Silva, H.M.R.D.; Peralta, J.; Oliveira, J.R.M. Using waste polymers as a reliable alternative for asphalt binder modification—Performance and morphological assessment. Constr. Build. Mater. 2019, 198, 237–244. [Google Scholar] [CrossRef]
- Fang, C.; Zhou, S.; Zhang, M.; Zhao, S.; Wang, X.; Zheng, C. Optimization of the modification technologies of asphalt by using waste EVA from packaging. J. Vinyl Addit. Technol. 2009, 15, 199–203. [Google Scholar] [CrossRef]
- Lakusic, S. Mastic asphalt modified with recycled polyurethane foam. J. Croat. Assoc. Civ. Eng. 2018, 70, 403–412. [Google Scholar] [CrossRef]
- Shahane, H.A.; Bhosale, S.S. E-Waste plastic powder modified bitumen: Rheological properties and performance study of bituminous concrete. Road Mater. Pavement Des. 2019, 22, 682–702. [Google Scholar] [CrossRef]
- Mohd Hasan, M.R.; Colbert, B.; You, Z.; Jamshidi, A.; Heiden, P.A.; Hamzah, M.O. A simple treatment of electronic-waste plastics to produce asphalt binder additives with improved properties. Constr. Build. Mater. 2016, 110, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Montalvo, L. Repurposing waste plastics into cleaner asphalt pavement materials: A critical literature review. J. Clean. Prod. 2021, 280, 124355. [Google Scholar] [CrossRef]
- Vargas, M.A.; Vargas, M.A.; Sánchez-Sólis, A.; Manero, O. Asphalt/polyethylene blends: Rheological properties, microstructure and viscosity modeling. Constr. Build. Mater. 2013, 45, 243–250. [Google Scholar] [CrossRef]
- Al-Abdul Wahhab, H.I.; Dalhat, M.A.; Habib, M.A. Storage stability and high-temperature performance of asphalt binder modified with recycled plastic. Road Mater. Pavement Des. 2016, 18, 1117–1134. [Google Scholar] [CrossRef]
- Ahmedzade, P.; Demirelli, K.; Günay, T.; Biryan, F.; Alqudah, O. Effects of Waste Polypropylene Additive on the Properties of Bituminous Binder. Procedia Manuf. 2015, 2, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Liu, X.; Yu, R.; Liu, P.; Lei, W. Preparation and Properties of Asphalt Modified with a Composite Composed of Waste Package Poly(vinyl chloride) and Organic Montmorillonite. J. Mater. Sci. Technol. 2014, 30, 1304–1310. [Google Scholar] [CrossRef]
- Cuadri, A.A.; Partal, P.; Ahmad, N.; Grenfell, J.; Airey, G. Chemically modified bitumens with enhanced rheology and adhesion properties to siliceous aggregates. Constr. Build. Mater. 2015, 93, 766–774. [Google Scholar] [CrossRef] [Green Version]
- Rogers, T. Everything You Need to Know about Polystyrene (PS). Available online: https://www.creativemechanisms.com/blog/polystyrene-ps-plastic/ (accessed on 27 August 2021).
- Sengoz, B.; Isikyakar, G. Evaluation of the properties and microstructure of SBS and EVA polymer modified bitumen. Constr. Build. Mater. 2008, 22, 1897–1905. [Google Scholar] [CrossRef]
- Yang, X.; Liu, K.; Yang, D. Some Problems of PE Modified Asphalt. J. China Foreign Highw. 2008, 28, 203–207. (In Chinese) [Google Scholar]
- Munaro, M.; Akcelrud, L. Correlations between composition and crystallinity of LDPE/HDPE blends. J. Polym. Res. 2007, 15, 83–88. [Google Scholar] [CrossRef]
- White, G.; Hall, F. Laboratory Comparison of Wet-Mixing and Dry-mixing of Recycled Waste Plastic for Binder and Asphalt Modification, Proceedings of the 100th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 5–29 January 2021; National Academy of Medicine: Washington, DC, USA, 2021. [Google Scholar]
- White, G.; Reid, G. Recycled Waste Plastic for Extending and Modifing Asphalt Binders, Proceedings of the 8th Symposium on Pavement Surface Characteristics: SURF 2018, Brisbane, Australia, 2–4 May 2018; Australian Road Research Board: Brisbane, Australia, 2018. [Google Scholar]
- Modarres, A.; Hamedi, H. Effect of waste plastic bottles on the stiffness and fatigue properties of modified asphalt mixes. Mater. Des. 2014, 61, 8–15. [Google Scholar] [CrossRef]
- Kumar, P.; Garg, R. Rheology of waste plastic fibre-modified bitumen. Int. J. Pavement Eng. 2011, 12, 449–459. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, C.; Adhikari, S.; Wu, C.; Yu, M. Evaluation of Waste Express Bag as a Novel Bitumen Modifier. Appl. Sci. 2019, 9, 1242. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Liu, P.; Yu, R.; Liu, X. Preparation process to affect stability in waste polyethylene-modified bitumen. Constr. Build. Mater. 2014, 54, 320–325. [Google Scholar] [CrossRef]
- Balasubramanian, B.; Gopala Krishna, G.V.T.; Saraswathy, V.; Srinivasan, K. Experimental investigation on concrete partially replaced with waste glass powder and waste E-plastic. Constr. Build. Mater. 2021, 278, 122400. [Google Scholar] [CrossRef]
- Yue, H.; Bird, R.N.; Heidrich, O. A review of the use of recycled solid waste materials in asphalt pavements. Resour. Conserv. Recycl. 2008, 52, 58–73. [Google Scholar]
- Movilla-Quesada, D.; Raposeiras, A.C.; Silva-Klein, L.T.; Lastra-González, P.; Castro-Fresno, D. Use of plastic scrap in asphalt mixtures added by dry method as a partial substitute for bitumen. Waste Manag. 2019, 87, 751–760. [Google Scholar] [CrossRef]
- White, G.; Magee, C. Laboratory Evaluation of Asphalt Containing Recycled Plastic as a Bitumen Extender and Modifier. J. Traffic Transp. Eng. 2019, 7, 218–235. [Google Scholar]
- Ranieri, M.; Costa, L.; Oliveira, J.R.M.; Silva, H.M.R.D.; Celauro, C. Asphalt Surface Mixtures with Improved Performance Using Waste Polymers via Dry and Wet Processes. J. Mater. Civ. Eng. 2017, 29, 04017169. [Google Scholar] [CrossRef]
- Chavez, F.; Marcobal, J.; Gallego, J. Laboratory evaluation of the mechanical properties of asphalt mixtures with rubber incorporated by the wet, dry, and semi-wet process. Constr. Build. Mater. 2019, 205, 164–174. [Google Scholar] [CrossRef]
- Wang, J. Application of Direct Investment SBS Modification Technology in Solid Engineering. J. China Foreign Highw. 2017, 37, 253–256. (In Chinese) [Google Scholar]
- Fang, C.; Wu, C.; Hu, J.; Yu, R.; Zhang, Z.; Nie, L.; Zhou, S.; Mi, X. Pavement Properties of Asphalt Modified with Packaging-Waste Polyethylene. J. Vinyl Addit. Technol. 2014, 20, 31–35. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Z. Study and Practice on Road Performance of Waste Polyethylene Plastic Modified Asphalt. Highw. Eng. 1996, 76, 62–64. (In Chinese) [Google Scholar]
- Dalhat, M.A.; Al-Abdul Wahhab, H.I.; Al-Adham, K. Recycled Plastic Waste Asphalt Concrete via Mineral Aggregate Substitution and Binder Modification. J. Mater. Civ. Eng. 2019, 31, 04019134. [Google Scholar] [CrossRef]
- Khan, I.M.; Kabir, S.; Alhussain, M.A.; Almansoor, F.F. Asphalt Design Using Recycled Plastic and Crumb-rubber Waste for Sustainable Pavement Construction. Procedia Eng. 2016, 145, 1557–1564. [Google Scholar] [CrossRef] [Green Version]
- Ho, S.; Church, R.; Klassen, K.; Law, B.; MacLeod, D.; Zanzotto, L. Study of recycled polyethylene materials as asphalt modifiers. Can. J. Civ. Eng. 2006, 33, 968–981. [Google Scholar] [CrossRef]
- Punith, V.S.; Veeraragavan, A.; Amirkhanian, S.N. Evaluation of Reclaimed Polyethylene Modified Asphalt Concrete Mixtures. Int. J. Pavement Res. 2011, 4, 1–10. [Google Scholar]
- Otuoze, H.S.; Ejeh, S.P.; Amartey, Y.D.; Joel, M. Rheology and Simple Performance Test (SPT) Evaluation of High-Density Polypropylene (HDPP) Waste-Modified Bituminous Mix. Jordan J. Civ. Eng. 2018, 12, 35–44. [Google Scholar]
- Al-Hadidy, A.I.; Tan, Y. Mechanistic approach for polypropylene-modified flexible pavements. Mater. Des. 2009, 30, 1133–1140. [Google Scholar] [CrossRef]
- Cheng, Y.; Fu, Q.; Fang, C.; Zhang, Q.; Lu, C. Preparation, Structure, and Properties of Modified Asphalt with Waste Packaging Polypropylene and Organic Rectorite. Adv. Mater. Sci. Eng. 2019, 2019, 5362795. [Google Scholar] [CrossRef] [Green Version]
- Ziari, H.; Nasiri, E.; Amini, A.; Ferdosian, O. The effect of EAF dust and waste PVC on moisture sensitivity, rutting resistance, and fatigue performance of asphalt binders and mixtures. Constr. Build. Mater. 2019, 203, 188–200. [Google Scholar] [CrossRef]
- Ghabchi, R.; Dharmarathna, C.P.; Mihandoust, M. Feasibility of using micronized recycled Polyethylene Terephthalate (PET) as an asphalt binder additive: A laboratory study. Constr. Build. Mater. 2021, 292, 123377. [Google Scholar] [CrossRef]
- Esfandabad, A.S.; Motevalizadeh, S.M.; Sedghi, R.; Ayar, P.; Asgharzadeh, S.M. Fracture and mechanical properties of asphalt mixtures containing granular polyethylene terephthalate (PET). Constr. Build. Mater. 2020, 259, 120410. [Google Scholar] [CrossRef]
- Fang, C.; Jiao, L.; Hu, J.; Yu, Q.; Guo, D.; Zhou, X.; Yu, R. Viscoelasticity of Asphalt Modified With Packaging Waste Expended Polystyrene. J. Mater. Sci. Technol. 2014, 30, 939–943. [Google Scholar] [CrossRef]
- González, O.; Muñoz, M.E.; Santamaría, A.; García-Morales, M.; Navarro, F.J.; Partal, P. Rheology and stability of bitumen/EVA blends. Eur. Polym. J. 2004, 40, 2365–2372. [Google Scholar] [CrossRef]
- Ameri, M.; Mansourian, A.; Sheikhmotevali, A.H. Investigating effects of ethylene vinyl acetate and gilsonite modifiers upon performance of base bitumen using Superpave tests methodology. Constr. Build. Mater. 2012, 36, 1001–1007. [Google Scholar] [CrossRef]
- De la Colina Martínez, A.L.; Martínez Barrera, G.; Barrera Díaz, C.E.; Ávila Córdoba, L.I.; Ureña Núñez, F.; Delgado Hernández, D.J. Recycled polycarbonate from electronic waste and its use in concrete: Effect of irradiation. Constr. Build. Mater. 2019, 201, 778–785. [Google Scholar] [CrossRef]
- Colbert, B.W.; You, Z. Properties of Modified Asphalt Binders Blended with Electronic Waste Powders. J. Mater. Civ. Eng. 2012, 24, 1261–1267. [Google Scholar] [CrossRef]
- Ameri, M.; Yeganeh, S.; Erfani Valipour, P. Experimental evaluation of fatigue resistance of asphalt mixtures containing waste elastomeric polymers. Constr. Build. Mater. 2019, 198, 638–649. [Google Scholar] [CrossRef]
- AASHTO. Mechanistic-Empirical Pavement Design Guide; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2008. [Google Scholar]
- Colbert, B.W.; Diab, A.; You, Z. Using M-E PDG to study the effectiveness of electronic waste materials modifications on asphalt pavements design thickness. Int. J. Pavement Res. Technol. 2013, 6, 319–326. [Google Scholar]
- Bazmara, B.; Tahersima, M.; Behravan, A. Influence of thermoplastic polyurethane and synthesized polyurethane additive in performance of asphalt pavements. Constr. Build. Mater. 2018, 166, 1–11. [Google Scholar] [CrossRef]
- Cong, L.; Yang, F.; Guo, G.; Ren, M.; Shi, J.; Tan, L. The use of polyurethane for asphalt pavement engineering applications: A state-of-the-art review. Constr. Build. Mater. 2019, 225, 1012–1025. [Google Scholar] [CrossRef]
- Sun, M.; Zheng, M.; Qu, G.; Yuan, K.; Bi, Y.; Wang, J. Performance of polyurethane modified asphalt and its mixtures. Constr. Build. Mater. 2018, 191, 386–397. [Google Scholar] [CrossRef]
- Salas, M.Á.; Pérez-Acebo, H.; Calderón, V.; Gonzalo-Orden, H. Bitumen modified with recycled polyurethane foam for employment in hot mix asphalt. Ing. Investig. 2018, 38, 60–66. [Google Scholar] [CrossRef]
- Salas, M.Á.; Pérez-Acebo, H. Introduction of recycled polyurethane foam in mastic asphalt. Gradevinar 2018, 70, 403–412. [Google Scholar]
- Naskar, M.; Chaki, T.K.; Reddy, K.S. Effect of waste plastic as modifier on thermal stability and degradation kinetics of bitumen/waste plastics blend. Thermochim. Acta 2010, 509, 128–134. [Google Scholar] [CrossRef]
- Ameri, M.; Nasr, D. Properties of asphalt modified with devulcanized polyethylene terephthalate. Pet. Sci. Technol. 2016, 34, 1424–1430. [Google Scholar] [CrossRef]
- Hu, C.; Lin, W.; Partl, M.; Wang, D.; Yu, H.; Zhang, Z. Waste packaging tape as a novel bitumen modifier for hot-mix asphalt. Constr. Build. Mater. 2018, 193, 23–31. [Google Scholar] [CrossRef]
- Padhan, R.K.; Sreeram, A.; Gupta, A. Evaluation of trans-polyoctenamer and cross-linking agents on the performance of waste polystyrene modified asphalt. Road Mater. Pavement Des. 2018, 21, 1170–1182. [Google Scholar] [CrossRef]
- Dalhat, M.A.; Al-Abdul Wahhab, H.I. Performance of recycled plastic waste modified asphalt binder in Saudi Arabia. Int. J. Pavement Eng. 2017, 18, 349–357. [Google Scholar] [CrossRef]
- Vargas, C.; El Hanandeh, A. Systematic literature review, meta-analysis and artificial neural network modelling of plastic waste addition to bitumen. J. Clean. Prod. 2021, 280, 124369. [Google Scholar] [CrossRef]
- Brovelli, C.; Crispino, M.; Pais, J.; Pereira, P. Using polymers to improve the rutting resistance of asphalt concrete. Constr. Build. Mater. 2015, 77, 117–123. [Google Scholar] [CrossRef]
- García-Morales, M.; Partal, P.; Navarro, F.J.; Gallegos, C. Effect of waste polymer addition on the rheology of modified bitumen. Fuel 2006, 85, 936–943. [Google Scholar] [CrossRef]
- Lai, Z.; Liu, K.; Yang, X.; Yang, D. Research on Performance of Asphalt Modified with Waste Plastics. J. Shandong Univ. Sci. Technol. 2010, 29, 73–77. (In Chinese) [Google Scholar]
- Nasr, D.; Pakshir, A.H. Rheology and storage stability of modified binders with waste polymers composites. Road Mater. Pavement Des. 2017, 20, 773–792. [Google Scholar] [CrossRef]
- Formela, K.; Sulkowski, M.; Saeb, M.R.; Colom, X.; Haponiuk, J.T. Assessment of microstructure, physical and thermal properties of bitumen modified with LDPE/GTR/elastomer ternary blends. Constr. Build. Mater. 2016, 106, 160–167. [Google Scholar] [CrossRef]
- Yi, X.; Wu, G.; Lu, F.; Tang, A. Hydrolysis of aromatic heterocyclic polymers in high temperature water. J. Appl. Polym. Sci. 2001, 82, 907–915. [Google Scholar] [CrossRef]
- Wen, G.; Zhang, Y.; Zhang, Y. Improved Properties of SBS-Modified Asphalt with Dynamic VuIcanization. Polym. Eng. Sci. 2002, 42, 1070–1081. [Google Scholar]
- Wang, S.; Ma, P.; Ouyang, C.; Zhang, Y. Study on stabilization of polyethylene/carbon black modified asphalt. Pet. Asph. 2006, 20, 22–26. (In Chinese) [Google Scholar]
- Nuñez, J.Y.M.; Domingos, M.D.I.; Faxina, A.L. Susceptibility of low-density polyethylene and polyphosphoric acid-modified asphalt binders to rutting and fatigue cracking. Constr. Build. Mater. 2014, 73, 509–514. [Google Scholar] [CrossRef]
- Yadollahi, G.; Sabbagh Mollahosseini, H. Improving the performance of Crumb Rubber bitumen by means of Poly Phosphoric Acid (PPA) and Vestenamer additives. Constr. Build. Mater. 2011, 25, 3108–3116. [Google Scholar] [CrossRef]
- Polacco, G.; Berlincioni, S.; Biondi, D.; Stastna, J.; Zanzotto, L. Asphalt modification with different polyethylene-based polymers. Eur. Polym. J. 2005, 41, 2831–2844. [Google Scholar] [CrossRef]
- Guru, M.; Cubuk, M.K.; Arslan, D.; Farzanian, S.A.; Bilici, I. An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material. J. Hazard Mater. 2014, 279, 30210. [Google Scholar] [CrossRef]
- Köfteci, S.; Ahmedzade, P.; Kultayev, B. Performance evaluation of bitumen modified by various types of waste plastics. Constr. Build. Mater. 2014, 73, 592–602. [Google Scholar] [CrossRef]
- Roja, K.L.; Masad, E. Influence of Chemical Constituents of Asphalt Binders on Their Rheological Properties. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 458–466. [Google Scholar] [CrossRef]
- Huang, S.C.; Benedetto, H.D. Advances in Asphalt Materials, 1st ed.; Woodhead Publishing: Abington, UK, 2015; pp. 31–57. [Google Scholar]
- Behnood, A.; Modiri Gharehveran, M. Morphology, rheology, and physical properties of polymer-modified asphalt binders. Eur. Polym. J. 2019, 112, 766–791. [Google Scholar] [CrossRef]
- Masad, E.; Roja, K.L.; Rehman, A.; Abdala, A.A. A Review of Asphalt Modification Using Plastics: A Focus on Polyethylene. Available online: https://www.researchgate.net/publication/341152175_A_Review_of_Asphalt_Modification_Using_Plastics_A_Focus_on_Polyethylene (accessed on 30 August 2021).
- Lesueur, D. The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Adv. Colloid Interface Sci. 2009, 145, 42–82. [Google Scholar] [CrossRef]
- Giavarini, C.; Filippis, P.D.; Santarelli, M.L.; Scarsella, M. Production of stable polypropylene-modified bitumens. Fuel 1996, 75, 681–686. [Google Scholar] [CrossRef]
- Rivera, C.; Caro, S.; Arámbula-Mercado, E.; Sánchez, D.B.; Karki, P. Comparative evaluation of ageing effects on the properties of regular and highly polymer modified asphalt binders. Constr. Build. Mater. 2021, 302, 124163. [Google Scholar] [CrossRef]
- Fuentes-Audén, C.; Sandoval, J.A.; Jerez, A.; Navarro, F.J.; Martínez-Boza, F.J.; Partal, P.; Gallegos, C. Evaluation of thermal and mechanical properties of recycled polyethylene modified bitumen. Polym. Test. 2008, 27, 1005–1012. [Google Scholar] [CrossRef]
- Fernandes, S.; Costa, L.; Silva, H.; Oliveira, J. Effect of incorporating different waste materials in bitumen. Ciência Tecnol. Mater. 2017, 29, e204–e209. [Google Scholar] [CrossRef]
- Karmakar, S.; Roy, T.K. Effect of Waste Plastic and Waste Tires Ash on Mechanical Behavior of Bitumen. J. Mater. Civ. Eng. 2016, 28, 04016006. [Google Scholar] [CrossRef]
- Lu, X.; Lsacsson, U. Modification of road bitumens with thermoplastic polymers. Polym. Test. 2000, 20, 77–86. [Google Scholar] [CrossRef]
- Alberto, G.G.E.; Rafael, H.N. Effect of Stirring Speed in Hot Mixing Process of Modified Asphalt with SBS Copolymer on Polymeric Distribution and its Rheological Properties. In Proceedings of the MRS Materials Research Society, Florence, Italy, 28 March–1 April 2016; 1813. [Google Scholar]
- Babalghaith, A.M.; Koting, S.; Ramli Sulong, N.H.; Karim, M.R. Optimization of mixing time for polymer modified asphalt. IOP Conf. Ser. Mater. Sci. Eng. 2019, 512, 012030. [Google Scholar] [CrossRef]
- Liang, M.; Xin, X.; Fan, W.; Wang, H.; Jiang, H.; Zhang, J.; Yao, Z. Phase behavior and hot storage characteristics of asphalt modified with various polyethylene: Experimental and numerical characterizations. Constr. Build. Mater. 2019, 203, 608–620. [Google Scholar] [CrossRef]
- Rojo, E.; Fernández, M.; Peña, J.J.; Peña, B.; Muñoz, M.E.; Santamaría, A. Rheological aspects of blends of metallocene-catalyzed atactic polypropylenes with bitumen. Polym. Eng. Sci. 2004, 44, 1792–1799. [Google Scholar] [CrossRef]
- Padhan, R.K.; Mohanta, C.; Sreeram, A.; Gupta, A. Rheological evaluation of bitumen modified using antistripping additives synthesised from waste polyethylene terephthalate (PET). Int. J. Pavement Eng. 2018, 21, 1083–1091. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Zhang, Y. The research of GMA-g-LDPE modified Qinhuangdao bitumen. Constr. Build. Mater. 2008, 22, 1067–1073. [Google Scholar]
- Yeh, P.-H.; Nien, Y.-H.; Chen, J.-H.; Chen, W.-C.; Chen, J.-S. Thermal and rheological properties of maleated polypropylene modified asphalt. Polym. Eng. Sci. 2005, 45, 1152–1158. [Google Scholar] [CrossRef]
- Ahmedzade, P.; Fainleib, A.; Günay, T.; Grygoryeva, O. Modification of bitumen by electron beam irradiated recycled low density polyethylene. Constr. Build. Mater. 2014, 69, 1–9. [Google Scholar] [CrossRef]
- Ahmedzade, P.; Fainleib, A.; Günay, T.; Starostenko, O.; Kovalinska, T. Effect of Gamma-Irradiated Recycled Low-Density Polyethylene on the High- and Low-Temperature Properties of Bitumen. Int. J. Polym. Sci. 2013, 2013, 8062–8070. [Google Scholar] [CrossRef]
- Fang, C.; Hu, J.; Zhou, S.; Wang, H.; Zhang, M.; Zhang, Y. Comparative Study of Asphalts Modified by Packaging Waste EPS and Waste PE. Polym.-Plast. Technol. Eng. 2011, 50, 220–224. [Google Scholar] [CrossRef]
- Lastra-González, P.; Calzada-Pérez, M.A.; Castro-Fresno, D.; Vega-Zamanillo, Á.; Indacoechea-Vega, I. Comparative analysis of the performance of asphalt concretes modified by dry way with polymeric waste. Constr. Build. Mater. 2016, 112, 1133–1140. [Google Scholar] [CrossRef] [Green Version]
- Al-Hadidy, A.I. Effect of laboratory aging on moisture susceptibility and resilient modulus of asphalt concrete mixes containing PE and PP polymers. Karbala Int. J. Mod. Sci. 2018, 4, 377–381. [Google Scholar] [CrossRef]
- Arabani, M.; Yousefpour Taleghani, M. Rutting behavior of hot mix asphalt modified by polyvinyl chloride powder. Pet. Sci. Technol. 2017, 35, 1621–1626. [Google Scholar] [CrossRef]
- Špaček, P.; Hegr, Z.; Beneš, J. Practical experiences with new types of highly modified asphalt binders. IOP Conf. Ser. Mater. Sci. Eng. 2017, 236, 012020. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Jiao, L.; Ni, F.; Yang, J. Evaluation of plastic–rubber asphalt: Engineering property and environmental concern. Constr. Build. Mater. 2014, 71, 416–424. [Google Scholar] [CrossRef]
- Beena, K.S.; Bindu, C.S. Waste plastic as a stabilizing additive in Stone Mastic Asphalt. Int. J. Eng. Technol. 2010, 2, 379–387. [Google Scholar]
- Ahmadinia, E.; Zargar, M.; Karim, M.R.; Abdelaziz, M.; Shafigh, P. Using waste plastic bottles as additive for stone mastic asphalt. Mater. Des. 2011, 32, 4844–4849. [Google Scholar] [CrossRef]
- Rongali, U.; Singh, G.; Chourasiya, A.; Jain, P.K. Laboratory performance of stone matrix asphalt containing composite. J. Sci. Ind. Res. 2013, 72, 186–192. [Google Scholar]
- Baghaee Moghaddam, T.; Karim, M.R.; Syammaun, T. Dynamic properties of stone mastic asphalt mixtures containing waste plastic bottles. Constr. Build. Mater. 2012, 34, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Ahmadinia, E.; Zargar, M.; Karim, M.R.; Abdelaziz, M.; Ahmadinia, E. Performance evaluation of utilization of waste Polyethylene Terephthalate (PET) in stone mastic asphalt. Constr. Build. Mater. 2012, 36, 984–989. [Google Scholar] [CrossRef]
- Angelone, S.; Cauhapé Casaux, M.; Borghi, M.; Martinez, F.O. Green pavements: Reuse of plastic waste in asphalt mixtures. Mater. Struct. 2015, 49, 1655–1665. [Google Scholar] [CrossRef]
- Giri, J.P.; Panda, M.; Sahoo, U.C. Use of waste polyethylene for modification of bituminous paving mixes containing recycled concrete aggregates. Road Mater. Pavement Des. 2018, 21, 289–309. [Google Scholar] [CrossRef]
- Almeida, A.; Crucho, J.; Abreu, C.; Picado-Santos, L. An Assessment of Moisture Susceptibility and Ageing Effect on Nanoclay-Modified AC Mixtures Containing Flakes of Plastic Film Collected as Urban Waste. Appl. Sci. 2019, 9, 3738. [Google Scholar] [CrossRef] [Green Version]
- Kamal Karim, H.; Ebrahim, S.M. Effects of Additive Materials on Indirect Tensile Strength and Moisture Sensitivity of Recycled Asphalt Pavement (RAP). Kurd. J. Appl. Res. 2019, 4, 69–79. [Google Scholar]
- The Durability Study of the Use of Modified Waste Plastic-Bitumen in Asphalt Concrete Mix Containing Reclaimed Asphalt Pavement. Available online: http://lib.itenas.ac.id/kti/wp-content/uploads/2013/04/15.-MAkalah-Lombok1.pdf (accessed on 18 November 2021).
- Leng, Z.; Sreeram, A.; Padhan, R.K.; Tan, Z. Value-added application of waste PET based additives in bituminous mixtures containing high percentage of reclaimed asphalt pavement (RAP). J. Clean. Prod. 2018, 196, 615–625. [Google Scholar] [CrossRef]
- Pouranian, M.R.; Shishehbor, M. Sustainability Assessment of Green Asphalt Mixtures: A Review. Environments 2019, 6, 73. [Google Scholar] [CrossRef] [Green Version]
- Poulikakos, L.D.; Papadaskalopoulou, C.; Hofko, B.; Gschösser, F.; Cannone Falchetto, A.; Bueno, M.; Arraigada, M.; Sousa, J.; Ruiz, R.; Petit, C.; et al. Harvesting the unexplored potential of European waste materials for road construction. Resour. Conserv. Recycl. 2017, 116, 32–44. [Google Scholar] [CrossRef]
- Araújo, J.P.C.; Oliveira, J.R.M.; Silva, H.M.R.D. The importance of the use phase on the LCA of environmentally friendly solutions for asphalt road pavements. Transp. Res. Part D Transp. Environ. 2014, 32, 97–110. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.; Pham, A.; Stasinopoulos, P.; Giustozzi, F. Recycling waste plastics in roads: A life-cycle assessment study using primary data. Sci. Total Environ. 2021, 751, 141842. [Google Scholar] [CrossRef]
- Lastra-González, P.; Lizasoain-Arteaga, E.; Castro-Fresno, D.; Flintsch, G. Analysis of replacing virgin bitumen by plastic waste in asphalt concrete mixtures. Int. J. Pavement Eng. 2021, 1–10. [Google Scholar] [CrossRef]
- Duarte, G.M.; Faxina, A.L. Asphalt concrete mixtures modified with polymeric waste by the wet and dry processes: A literature review. Constr. Build. Mater. 2021, 312, 125408. [Google Scholar] [CrossRef]
- Yan, K.; Xu, H.; You, L. Rheological properties of asphalts modified by waste tire rubber and reclaimed low density polyethylene. Constr. Build. Mater. 2015, 83, 143–149. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, S.; Zhou, H.; Hu, W.; Huang, B. Compatibility and rheological characterization of asphalt modified with recycled rubber-plastic blends. Constr. Build. Mater. 2020, 270, 121416. [Google Scholar] [CrossRef]
- Zhang, F.; Yu, J.; Han, J. Effects of thermal oxidative ageing on dynamic viscosity, TG/DTG, DTA and FTIR of SBS- and SBS/sulfur-modified asphalts. Constr. Build. Mater. 2011, 25, 129–137. [Google Scholar] [CrossRef]
- Yu, R.; Fang, C.; Liu, P.; Liu, X.; Li, Y. Storage stability and rheological properties of asphalt modified with waste packaging polyethylene and organic montmorillonite. Appl. Clay Sci. 2015, 104, 1–7. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Erkens, S.; Skarpas, A. Experimental characterization of storage stability of crumb rubber modified bitumen with warm-mix additives. Constr. Build. Mater. 2020, 249, 118840. [Google Scholar] [CrossRef]
- Tang, Y.; Ledieu, E.; Cervellere, M.R.; Millett, P.C.; Ford, D.M.; Qian, X. Formation of polyethersulfone membranes via nonsolvent induced phase separation process from dissipative particle dynamics simulations. J. Membr. Sci. 2020, 599, 117826. [Google Scholar] [CrossRef]
- Chen, M.; Geng, J.; Xia, C.; He, L.; Liu, Z. A review of phase structure of SBS modified asphalt: Affecting factors, analytical methods, phase models and improvements. Constr. Build. Mater. 2021, 294, 123610. [Google Scholar] [CrossRef]
- Qian, C.; Fan, W.; Ren, F.; Lv, X.; Xing, B. Influence of polyphosphoric acid (PPA) on properties of crumb rubber (CR) modified asphalt. Constr. Build. Mater. 2019, 227, 117094. [Google Scholar] [CrossRef]
- Vamegh, M.; Ameri, M.; Chavoshian Naeni, S.F. Performance evaluation of fatigue resistance of asphalt mixtures modified by SBR/PP polymer blends and SBS. Constr. Build. Mater. 2019, 209, 202–214. [Google Scholar] [CrossRef]
- Galooyak, S.S.; Dabir, B.; Nazarbeygi, A.E.; Moeini, A. Rheological properties and storage stability of bitumen/SBS/montmorillonite composites. Constr. Build. Mater. 2010, 24, 300–307. [Google Scholar] [CrossRef]
- Gao, G.; Zhang, Y. Effect of Carbon Black on Storage Stability of Polymer Modified Asphalt. China Rubber Ind. 2008, 55, 226–230. (In Chinese) [Google Scholar]
- Put, J.; van Duin, M.; Reedijk, J.; Haasnoot, J.G.; Versloot, P. Sulfur Vulcanization of Simple Model Olefins, Part IV: Vulcanizations of 2,3-Dimethyl-2-Butene with TMTD and Activated Zinc Dithiocarbamate/Xanthate Accelerators at Different Temperatures. Rubber Chem. Technol. 1995, 68, 563–572. [Google Scholar]
- Wang, S.; Yuan, C.; Deng, J. Crumb tire rubber and polyethylene mutually stabilized in asphalt by screw extrusion. J. Appl. Polym. Sci. 2014, 131, 81–86. [Google Scholar] [CrossRef]
- Karahrodi, M.H.; Jazani, O.M.; Paran, S.M.R.; Formela, K.; Saeb, M.R. Modification of thermal and rheological characteristics of bitumen by waste PET/GTR blends. Constr. Build. Mater. 2017, 134, 157–166. [Google Scholar] [CrossRef]
- Dessouky, S.; Contreras, D.; Sanchez, J.; Papagiannakis, A.T.; Abbas, A. Influence of hindered phenol additives on the rheology of aged polymer-modified bitumen. Constr. Build. Mater. 2013, 38, 214–223. [Google Scholar] [CrossRef]
- Lu, Y.; Yu, L.; Fang, J.; Yun, Q.; Lu, J. Research development of polymer modified asphalt. New Chem. Mater. 2020, 48, 222–230. (In Chinese) [Google Scholar] [CrossRef]
- Yu, H.; Leng, Z.; Zhang, Z.; Li, D.; Zhang, J. Selective absorption of swelling rubber in hot and warm asphalt binder fractions. Constr. Build. Mater. 2020, 238, 117727. [Google Scholar] [CrossRef]
- Fang, C.; Zhou, S.; Zhang, M.; Zhao, S. Modification of waterproofing asphalt by PVC packaging waste. J. Vinyl Addit. Technol. 2009, 15, 229–233. [Google Scholar] [CrossRef]
- Tan, Y.; Li, G.; Shan, L.; Lyu, H.; Meng, A. Research progress of bitumen microstructures and components. J. Traffic Transp. Eng. 2020, 20, 1–17. (In Chinese) [Google Scholar]
- Guo, F.; Zhang, J.; Pei, J.; Zhou, B.; Falchetto, A.C.; Hu, Z. Investigating the interaction behavior between asphalt binder and rubber in rubber asphalt by molecular dynamics simulation. Constr. Build. Mater. 2020, 252, 118956. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, H.; Chen, Y.; Ji, J.; Zhang, Y. A review on compatibility between crumb rubber and asphalt binder. Constr. Build. Mater. 2021, 297, 123820. [Google Scholar] [CrossRef]
- Pérez-Lepe, A.; Martínez-Boza, F.; Gallegos, C. Influence of Polymer Concentration on the Microstructure and Rheological Properties of High-Density Polyethylene (HDPE)-Modified Bitumen. Energy Fuels 2005, 19, 1148–1152. [Google Scholar] [CrossRef]
- Ghuzlan, K.; Al-Khateeb, G.G.; Qasem, Y. Rheological Properties of Polyethylene-Modified Asphalt Binder, Proceedings of the 3rd Annual International Conference on Civil Engineering (ATINER), Athens, Greece, 20–23 June 2013; Athens Institute for Education and Research: Athens, Greece, 2013. [Google Scholar]
Countries or Areas | Laws and Main Measures |
---|---|
USA | In 2019, California Conference Bill No. 1080 phased out disposable plastics by 2030. |
Canada | It was announced that the use of disposable plastic products would be banned from 2021. |
Japan | Enactment of the ‘Plastic Resource Recycling Promotion Act’ in 2019 to reduce disposable plastic products by 25% by 2030. |
Africa | South Africa introduced a plastic bag levy policy in 2003; plastic shopping bags are banned in 16 countries in West Africa. |
India | From 2 October, 2019, the use of plastic bags, bottles, plates, and straws was prohibited nationwide. |
UK | The ban on the use of plastic straws, plastic cotton swabs, etc., began on 1 October 2020. |
Europe | The European Commission’s proposal to prohibit the use of disposable plastic products, covering ten kinds of disposable plastic products, was enacted on 3 July 2021 with a view to reducing disposable plastic containers and packaging in Europe by 2030. |
Norway | From 3 July 2021, the use of disposable plastic products such as plastic straws and tableware is prohibited. |
Iceland | From 3 July 2021, it is prohibited to put commonly used disposable plastic products on the market. |
China | In 2007, the General Office of the State Council of China published a Notice for limiting the use of free plastic bags. In 2020, the National Development and Reform Commission and the Ministry of Ecological Environment of China published a Notice for a ban on the use of disposable plastic products. |
Type | Melting Point (°C) | Sources [21,42] |
---|---|---|
LDPE | 110–120 [43] | Soft drink and mineral water bottles |
HDPE | 130 [44] | Plastic bottles and packaging |
PP | 145–165 [45] | Straw, furniture, and wrapping industries |
PVC | 160–210 [46] | Fittings and plumbing pipes |
PET | 260 [47] | Soft drink and water bottles |
PS | 210–249 [48] | Disposable plates and cups, carry-out containers, and compact disc cases |
EVA | 65–80 [49] | Soles, thin films, and wire cables |
ABS | No true melting point [42] | Electronic devices |
PU | No true melting point [42] | Upholstered furniture and mattresses, shoes, cars, medical devices, buildings, and technical equipment |
Method | Production Cost | Technological Problem | Performance of Mixture | ||
---|---|---|---|---|---|
Advantage | Drawback | Advantage | Drawback | ||
Wet process | Expensive (AC-16) | Normative guidance and engineering experience | Complex production process (specialized mixing and storage facilities) | Higher viscosity | Poor storage stability |
Dry process | Cheap (AC-16) | Lack of normative guidance | Simple production process (no need of professional facility) | - | Poor water stability |
Type | Characteristics of Waste Plastic | Reference | |||
---|---|---|---|---|---|
Compatibility | High-Temperature Stability | Low-Temperature Flexibility | Viscosity | ||
LDPE | √ | √ | - | √ | [30] |
HDPE | √ | - | [31,32] | ||
PP | √ | √ | - | √ | [34,45,90] |
PVC | - | √ | - | √ | [35,36] |
PET | - | √ | - | √ | [28] |
PS | - | √ | - | √ | [33] |
EVA | √ | √ | √ | √ | [32,37,38,78] |
ABS | √ | √ | - | - | [26] |
PU | √ | - | - | √ | [85,87] |
Waste Plastic | Optimum Content (wt.%) | Blending Temperature (°C) | Blending Time (min) | Blending Speed (rpm) | Reference |
---|---|---|---|---|---|
PE | 3–6 | 145–190 | 60–150 | 1750–4000 | [31,32,106,122] |
PP | 3–6 | 160–180 | 45–90 | 1800–4000 | [45,72,90,123] |
PVC | 4–8 | 160–180 | 60–180 | 1300–2000 | [36,108] |
PET | 2–8 | 180 | 60 | 13,000 | [37,38,56,78] |
EVA | 3–5 | 140–180 | 80–120 | 1800–3000 | [37,38,78] |
PS | 4–6 | 150–190 | 90–120 | 3000 | [33,77] |
Type | Source | Physical Method | Form | Size | Reference |
---|---|---|---|---|---|
Waste plastic bag waste plastic pipe | - | Shredding | Strip Fiber | 1–2 cm 20 × 3 mm2 | [35,55,90] |
Waste plastic bottle | PET | Cutting and crushing | Particle | 0.45–1.18 mm | [54] |
Waste milk bag | - | Extruding | Pellet | - | [57] |
Waste plastic bottle waste express bag | PET | Grinding | Particle Piece | 0.45–0.5 mm 2–5 mm | [56,124] |
Waste window blind and cable | PVC | Pulverization | Powder | - | [108] |
Method | Modifying Influence | Reference | |
---|---|---|---|
Additive | Phosphoric acid | Improve rheological behaviors of modified asphalt and increase the storage stability at the storage temperature. | [159] |
Montmorillonite | Improve the storage stability of modified asphalt and does not compromise its excellent high temperature rheological properties. | [155] | |
Nano clay | Improves the stability of modified asphalt. | [160] | |
Hydrophobic clay minerals | The storage stability of modified asphalt is improved by reducing the density difference between polymer modifiers and asphalt. | [161] | |
Carbon black | Reduces the density difference between polymer and asphalt, thus improving the storage stability of modified asphalt. | [103,162] | |
Sulfur | In this process, the loss of unsaturation, the shift of the double bonds and a molecular isomerization occur. | [101,102,163] | |
Functionalization | Copolymer | Improves the compatibility of modified asphalt. | [2,164,165] |
Cross-linking agent | Makes the polymer react with asphalt, so as to provide a chemical connection between the two and form a three-dimensional network structure and improve the compatibility of asphalt. | [38,93] | |
Radical initiator | Promotes direct covalent molecular bonding between e-waste plastic powders and the modified asphalt. | [41] | |
Antioxidants | Believed to play a role by scavenging free radicals and decomposing the hydroperoxides generated during oxidation. | [166] | |
Functional groups | It is generally expected that the added functional groups will interact with some components of asphalt in various ways, such as forming hydrogen bonds or chemical bonds, which may improve compatibility to some extent. | [24] | |
Grafting | Maleic anhydride (MAH), methacrylic acid (MAA) and glycidyl methacrylate (GMA) were used to graft some currently used polymer modifiers and were found to improve the storage stability of asphalt. | [24] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Zhao, Y.; Li, K. Using Waste Plastics as Asphalt Modifier: A Review. Materials 2022, 15, 110. https://doi.org/10.3390/ma15010110
Xu F, Zhao Y, Li K. Using Waste Plastics as Asphalt Modifier: A Review. Materials. 2022; 15(1):110. https://doi.org/10.3390/ma15010110
Chicago/Turabian StyleXu, Fengchi, Yao Zhao, and Kangjian Li. 2022. "Using Waste Plastics as Asphalt Modifier: A Review" Materials 15, no. 1: 110. https://doi.org/10.3390/ma15010110
APA StyleXu, F., Zhao, Y., & Li, K. (2022). Using Waste Plastics as Asphalt Modifier: A Review. Materials, 15(1), 110. https://doi.org/10.3390/ma15010110