On the Miscibility of Nematic Liquid Crystals with Ionic Liquids and Joint Reaction for High Helical Twisting Power Product(s)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Liquid Crystals
2.2. Ionic Liquids
2.3. Studies of Miscibility, Reactivity and Helical Pitch in Mixtures of the LCs with ILs
2.4. Studies of the Reaction of the 1825 Liquid Crystal Host with the [N11116][BNDP] Chiral Salt
3. Results and Discussion
3.1. Survey Studies of Miscibility of the Liquid Crystals with the Ionic Liquids
3.2. Phase Diagrams and Reactivity Studies of the Mixtures Exhibiting Twisted Nematic Phase
3.3. Studies of the Helical Pitch of the mixtures Exhibitingthe Twisted Nematic Phase
3.4. Studies of the Reaction of the [N11116][BNDP] Chiral Salt with the Multicomponent 1825 Liquid Crystal Host for High Helical Twisting Power Product(s)
3.4.1. Reference Studies of Reactivity of the 1825 LC Host with Double Dopant Containing the [BNDP] and [N11116] Ions
3.4.2. Dynamics of the Helical Pitch of the Mixtures with the Heating Time
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, W.; Zhang, L.; Cao, H.H.; Song, L.; Zhao, H.; Yang, Z.; Cheng, Z.; Yang, H.; Guo, L. Electro-optical study of chiral nematic liquid crystal/chiral ionic liquid composites with electrically controllable selective reflection characteristics. Phys. Chem. Chem. Phys. 2010, 12, 2632–2638. [Google Scholar] [CrossRef]
- Hu, W.; Zhao, H.; Song, L.; Yang, Z.; Cao, H.; Cheng, Z.; Liu, Q.; Yang, H. Electrically Controllable Selective Reflection of Chiral Nematic Liquid Crystal/Chiral Ionic Liquid Composites. Adv. Mater. 2010, 22, 468–472. [Google Scholar] [CrossRef]
- Tondiglia, V.T.; Natarajan, L.V.; Bailey, C.A.; Duning, M.M.; Sutherland, R.L.; Ke-Yang, D.; Voevodin, A.; White, T.J.; Bunning, T.J. Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals. J. Appl. Phys. 2011, 110, 053109. [Google Scholar] [CrossRef]
- Tondiglia, V.P.; Natarajan, L.V.; Bailey, C.A.; McConney, M.E.; Lee, K.M.; Bunning, T.J.; Zola, R.; Nemati, H.; Yang, D.-K.; White, T.J. Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals. Opt. Mater. Expr. 2014, 4, 1465–1472. [Google Scholar] [CrossRef]
- Lee, K.M.; Tondiglia, V.P.; McConney, M.E.; Natarajan, L.V.; Bunning, T.J.; White, T.J. Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals. ACS Photonics 2014, 1, 1033–1041. [Google Scholar] [CrossRef]
- Lee, K.M.; Tondiglia, V.P.; White, T.J. Electrically Reconfigurable Liquid Crystalline Mirrors. ACS Omega 2018, 3, 4453–4457. [Google Scholar] [CrossRef] [PubMed]
- Yamakawa, S.; Wada, K.; Hidaka, M.; Hanasaki, T.; Akagi, K. Chiral Liquid-Crystalline Ionic Liquid Systems Useful for Electrochemical Polymerization that Affords Helical Conjugated Polymers. Adv. Funct. Mater. 2019, 29, 1806592. [Google Scholar] [CrossRef]
- Ahn, S.; Yamakawa, S.; Akagi, K. Liquid crystallinity-embodied imidazolium-based ionic liquids and their chiral mesophases induced by axially chiral tetra-substituted binaphthyl derivatives. J. Mater. Chem. C 2015, 3, 3960–3970. [Google Scholar] [CrossRef]
- Duda, Ł.; Potaniec, B.; Czajkowski, M.; Fiedot-Toboła, M.; Palewicz, M.; Zdończyk, M.; Madej, A.; Cybińska, J. Studies of intermolecular proton transfer, its influence on the liquid crystal properties and electrically-driven transport of chiral ions in mixtures of chiral liquid crystalline 4-phenylpyridine derivative and organic acids of various strength. J. Mol. Liq. 2021, 336, 116455. [Google Scholar] [CrossRef]
- Lu, H.; Xu, W.; Song, Z.; Zhang, S.; Qiu, L.; Wang, X.; Zhang, G.; Hu, J.; Lv, G. Electrically switchable multi-stable cholesteric liquid crystal based on chiral ionic liquid. Opt. Lett. 2014, 39, 6795–6798. [Google Scholar] [CrossRef] [PubMed]
- Czajkowski, M.; Klajn, J.; Cybińska, J.; Feder-Kubis, J.; Komorowska, K. Cholesteric gratings induced by electric field in mixtures of liquid crystal and novel chiral ionic liquid. Liq. Cryst. 2017, 44, 911–923. [Google Scholar] [CrossRef]
- Lan, Z.; Li, Y.; Dai, H.; Luo, D. Bistable Smart Window Based on Ionic Liquid Doped Cholesteric Liquid Crystal. IEEE Photonics J. 2017, 9, 1–7. [Google Scholar] [CrossRef]
- Li, W.; Zhang, J.; Li, B.; Zhang, M.; Wu, L. Branched quaternary ammonium amphiphiles: Nematic ionic liquid crystals near room temperature. Chem. Commun. 2009, 35, 5269–5271. [Google Scholar] [CrossRef]
- Goossens, K.; Nockemann, P.; Driesen, K.; Goderis, B.; Görller-Walrand, C.; van Hecke, K.; van Meerve, L.; Pouzet, E.; Binnemans, K.; Cardinaels, T. Imidazolium ionic liquid crystals with pendant mesogenic groups. Chem. Mater. 2008, 20, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Baudoux, J.; Judeinstein, P.; Cahard, D.; Plaquevent, J.C. Design and synthesis of novel ionic liquid/liquid crystals (IL2Cs) with axial chirality. Tetrahedron Lett. 2005, 46, 1137–1140. [Google Scholar] [CrossRef]
- Marcos, M.; Alcalá, R.; Barberá, J.; Romero, P.; Sánchez, C.; Serrano, J.L. Photosensitive ionic nematic liquid crystalline complexes based on dendrimers and hyperbranched polymers and a cyanoazobenzene carboxylic acid. Chem. Mater. 2008, 20, 5209–5217. [Google Scholar] [CrossRef]
- Bayón, R.; Coco, S.; Espinet, P. Gold liquid crystals displaying luminescence in the mesophase and short F···F interactions in the solid state. Chem. Eur. J. 2005, 11, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shen, Z.; Gehringer, L.; Frey, H.; Stiriba, S.E. Supramolecular thermotropic liquid crystalline materials with nematic mesophase based on methylated hyperbranched polyethylenimine and mesogenic carboxylic acid. Macromol. Rapid Comm. 2006, 27, 69–75. [Google Scholar] [CrossRef]
- Kondrat, S.; Bier, M.; Harnau, L. Phase behavior of ionic liquid crystals. J. Chem. Phys. 2010, 132, 184901. [Google Scholar] [CrossRef] [Green Version]
- Goossens, K.; Lava, K.; Bielawski, C.W.; Binnemans, K. Ionic Liquid Crystals: Versatile Materials. Chem. Rev. 2016, 116, 4643–4807. [Google Scholar] [CrossRef] [PubMed]
- Duda, Ł.; Czajkowski, M.; Potaniec, B.; Vaňkátová, P. Helical twisting power and compatibility in twisted nematic phase of new chiral liquid crystalline dopants with various liquid crystalline matrices. Liq. Cryst. 2019, 46, 1769–1779. [Google Scholar] [CrossRef]
- Ranke, J.; Othman, A.; Fan, P.; Müller, A. Explaining ionic liquid water solubility in terms of cation and anion hydrophobicity. Int. J. Mol. Sci. 2009, 10, 1271–1289. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Chen, L.; Ye, Y.; Chen, L.; Qi, Z.; Freund, H.; Sundmacher, K. An overview of mutual solubility of ionic liquids and water predicted by COSMO-RS. Ind. Eng. Chem. Res. 2012, 51, 6256–6264. [Google Scholar] [CrossRef]
- Schindl, A.; Hagen, M.L.; Muzammal, S.; Gunasekera, H.A.D.; Croft, A.K. Proteins in ionic liquids: Reactions, applications, and futures. Front. Chem. 2019, 2019. 7, 347. [Google Scholar] [CrossRef] [Green Version]
- Schröder, C. Proteins in Ionic Liquids: Current Status of Experiments and Simulations. Top. Curr. Chem. 2017, 375, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohd, N.; Draman, S.F.S.; Salleh, M.S.N.; Yusof, N.B. Dissolution of cellulose in ionic liquid: A review. AIP Conf. Proc. 2017, 1809, 020035. [Google Scholar] [CrossRef] [Green Version]
- Eelkema, R.; van Delden, R.A.; Feringa, B.L. Direct visual detection of the stereoselectivity of a catalytic reaction. Angew. Chem. Int. Ed. 2004, 43, 5013–5016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eelkema, R.; Feringa, B.L. Amplification of chirality in liquid crystals. Org. Biomol. Chem. 2006, 4, 3729–3745. [Google Scholar] [CrossRef]
- Li, Q.; Green, L.; Venkataraman, N.; Shiyanovskaya, I.; Khan, A.; Urbas, A.; Doane, J.W. Reversible photoswitchable axially chiral dopants with high helical twisting power. J. Am. Chem. Soc. 2007, 129, 12908–12909. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Gu, W.; Wei, J.; Zhang, W.; Zhang, Z.; Yu, Y.; Zhou, N.; Zhu, X. Novel planar chiral dopants with high helical twisting power and structure-dependent functions. J. Mater. Chem. C 2016, 4, 9576–9580. [Google Scholar] [CrossRef]
- Dabrowski, R.; Dziaduszek, J.; Stolarz, Z.; Kedzierski, J. Liquid crystalline materials with low ordinary index. J. Opt. Technol. 2005, 72, 662–667. [Google Scholar] [CrossRef]
- Nowinowski-Kruszelnicki, E.; Kedzierski, J.; Raszewski, Z.; Jaroszewicz, L.; Dabrowski, R.; Kojdecki, M.; Piecek, W.; Perkowski, P.; Garbat, K.; Olifierczuk, M.; et al. High birefringence liquid crystal mixtures for electro-optical devices. Opt. Appl. 2012, 42, 167–180. [Google Scholar] [CrossRef]
- Reuter, M.; Vieweg, N.; Fischer, B.M.; Mikulicz, M.; Koch, M.; Garbat, K.; Dąbrowski, R. Highly birefringent, low-loss liquid crystals for terahertz applications. APL Mater. 2013, 1, 012107. [Google Scholar] [CrossRef]
- Kula, P.; Spadło, A.; Dziaduszek, J.; Filipowicz, M.; Dąbrowski, R.; Czub, J.; Urban, S. Mesomorphic, dielectric, and optical properties of fluorosubstituted biphenyls, terphenyls, and quaterphenyls. Opto-Electron. Rev. 2008, 16, 379–385. [Google Scholar] [CrossRef]
- Pestov, S.; Vill, V. Liquid Crystals. In Springer Handbook of Materials Data, 2nd ed.; Warlimont, H., Martienssen, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 959–991. [Google Scholar] [CrossRef]
- Feder-Kubis, J. Synthesis and spectroscopic properties of symmetrical ionic liquids based on (−)-menthol. J. Mol. Liq. 2017, 226, 63–70. [Google Scholar] [CrossRef]
- Janus, E.; Gano, M.; Feder-Kubis, J.; Sośnicki, J. Chiral protic imidazolium salts with a (–)-menthol fragment in the cation: Synthesis, properties and use in the Diels-Alder reaction. RSC Adv. 2018, 8, 10318–10331. [Google Scholar] [CrossRef] [Green Version]
- Andresová, A.; Bendová, M.; Schwarz, J.; Wagner, Z.; Feder-Kubis, J. Influence of the alkyl side chain length on the thermophysical properties of chiral ionic liquids with a (1R,2S,5R)-(–)-menthol substituent and data analysis by means of mathematical gnostics. J. Mol. Liq. 2017, 242, 336–348. [Google Scholar] [CrossRef]
- Feder-Kubis, J.; Zabielska-Matejuk, J.; Stangierska, A.; Przybylski, P.; Jacquemin, J.; Geppert-Rybczyńska, M. Toward Designing “sweet” Ionic Liquids Containing a Natural Terpene Moiety as Effective Wood Preservatives. ACS Sustain. Chem. Eng. 2019, 7, 15628–15639. [Google Scholar] [CrossRef]
- Pernak, J.; Feder-Kubis, J. Chiral pyridinium-based ionic liquids containing the (1R,2S,5R)-(–)-menthyl group. Tetrahedron Asymmetry 2006, 17, 1728–1737. [Google Scholar] [CrossRef]
- Pernak, J.; Feder-Kubis, J. Synthesis and properties of chiral ammonium-based ionic liquids. Chem. Eur. J. 2005, 11, 4441–4449. [Google Scholar] [CrossRef]
- Ko, S.-W.; Huang, S.-H.; Fuh, A.Y.-G.; Lin, T.-H. Measurement of helical twisting power based on axially symmetrical photo-aligned dye-doped liquid crystal film. Opt. Expr. 2009, 17, 15926–15931. [Google Scholar] [CrossRef] [PubMed]
- Golicha, H.S.A.; Omar, M.H.; Mbithi, N.M. Optical Techniques in the Determination of Pitch Lengths in the Cholesteric and Chiral Smectic C Phases. J. Mater. Sci. Eng. 2021, 10, 3. [Google Scholar]
- Zhou, M.; Lu, H.; Zhang, X.; Zhang, Q.; Xu, M.; Zhu, J.; Zhang, G.; Ding, Y.; Qiu, L. Tuning helical twisting power and photoisomerisation kinetics of axially chiral cyclic azobenzene dopants in cholesteric liquid crystals. Liq. Cryst. 2019, 46, 2181–2189. [Google Scholar] [CrossRef]
- Ryabchun, A.; Lancia, F.; Chen, J.; Morozov, D.; Feringa, B.L.; Katsonis, N. Helix Inversion Controlled by Molecular Motors in Multistate Liquid Crystals. Adv. Mater. 2020, 32, 2004420. [Google Scholar] [CrossRef]
- Jo, S.Y.; Kim, B.C.; Jeon, S.W.; Bae, J.H.; Walker, M.; Wilson, M.; Choi, S.W.; Takezoe, H. Enhancement of the helical twisting power with increasing the terminal chain length of nonchiral bent-core molecules doped in a chiral nematic liquid crystal. RSC Adv. 2017, 7, 1932–1935. [Google Scholar] [CrossRef] [Green Version]
- Xiang, J.; Li, Y.; Li, Q.; Paterson, D.A.; Storey, J.M.D.; Imrie, C.T.; Lavrentovich, O.D. Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics. Adv. Mater. 2015, 27, 3014–3018. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.C.; Aya, S.; Kang, S.; Araoka, F.; Ishikawa, K.; Takezoe, H. Are chiral dopants with higher twisting power advantageous to induce wider temperature range of the blue phases? Liq. Cryst. 2013, 40, 951–958. [Google Scholar] [CrossRef]
- Li, J.; Wen, C.H.; Gauza, S.; Lu, R.; Wu, S.T. Refractive Indices of Liquid Crystals for Display Applications. J. Display Technol. 2005, 1, 51–61. [Google Scholar] [CrossRef]
- Lava, K. Ionic Liquid Crystals Based on Novel Heterocyclic Cores. Ph.D. Dissertation, Katholieke Universiteit Leuven, Groep Wetenschap & Technologie, Arenberg Doctoraatsschool, W. de Croylaan, Leuven, Belgium, 2012. (ISBN 978-90-8649-570-2 D/2012/10.705/87). [Google Scholar]
- Cammarata, L.; Kazarian, S.G.; Salter, P.A.; Welton, T. Molecular states of water in room temperature ionic liquids. Phys. Chem. Chem. Phys. 2001, 3, 5192–5200. [Google Scholar] [CrossRef] [Green Version]
No. | LC | CIL (Number) | xIL | T [°C] | Phase State 1 | Helical Pitch Determination Method | p (±SD) [μm] | p−1 (±SD) [μm−1] |
---|---|---|---|---|---|---|---|---|
1 | E7 | [MenHIm][NTf2] (13) | 0.16 | 35 | Nh* + I | fingerprint | 6.2 ± 1.0 | 0.16 ± 0.03 |
2 | E7 | [MenC2Im][NTf2] (14) | 0.12 | 35 | Nh + Nh* + I 2 | fingerprint | 6.7 ± 0.9 | 0.15 ± 0.02 |
3 | E7 | [MenPy][NTf2] (17) | 0.10 | 35 | Nh* + I | fingerprint | 6.0 ± 1.2 | 0.17 ± 0.04 |
4 | E7 | [MenMenIm][PFSI] (18) | 0.17 | 35 | Nh* + I | fingerprint | 5.6 ± 0.8 | 0.18 ± 0.03 |
5 | E7 | [MenMenIm][DCA] (19) | 0.09 | 35 | Nh* + I | fingerprint | 4.3 ± 0.4 | 0.23 ± 0.02 |
6 | E7 | [MenMenIm][SCN] (20) | 0.11 | 35 | Nh* + I | fingerprint | 7.0 ± 1.1 | 0.14 ± 0.03 |
7 | E7 | [N11116][BNDP] (22) | 0.08 | 35 | Nh* + I | fingerprint | 10.0 ± 2.5 | 0.10 ± 0.03 |
8 | 1825 | [MenMenIm][DCA] (19) | 0.10 | 25 | Npl* + I | wedge cell | 1.6 ± 0.7 3 | 0.62 ± 0.25 3 |
9 | 1825 | [N11116][BNDP] (22) | 0.08 | 35 | Nh* + I | fingerprint | 15.0 ± 3.5 3 | 0.07± 0.02 3 |
10 | ZLI-1496 | [N11116][BNDP] (22) | 0.09 | n/d | Nh* + I 4 | n/d 4 | n/d 4 | n/d 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czajkowski, M.; Feder-Kubis, J.; Potaniec, B.; Duda, Ł.; Cybińska, J. On the Miscibility of Nematic Liquid Crystals with Ionic Liquids and Joint Reaction for High Helical Twisting Power Product(s). Materials 2022, 15, 157. https://doi.org/10.3390/ma15010157
Czajkowski M, Feder-Kubis J, Potaniec B, Duda Ł, Cybińska J. On the Miscibility of Nematic Liquid Crystals with Ionic Liquids and Joint Reaction for High Helical Twisting Power Product(s). Materials. 2022; 15(1):157. https://doi.org/10.3390/ma15010157
Chicago/Turabian StyleCzajkowski, Maciej, Joanna Feder-Kubis, Bartłomiej Potaniec, Łukasz Duda, and Joanna Cybińska. 2022. "On the Miscibility of Nematic Liquid Crystals with Ionic Liquids and Joint Reaction for High Helical Twisting Power Product(s)" Materials 15, no. 1: 157. https://doi.org/10.3390/ma15010157
APA StyleCzajkowski, M., Feder-Kubis, J., Potaniec, B., Duda, Ł., & Cybińska, J. (2022). On the Miscibility of Nematic Liquid Crystals with Ionic Liquids and Joint Reaction for High Helical Twisting Power Product(s). Materials, 15(1), 157. https://doi.org/10.3390/ma15010157