Newly-Obtained Two Organic-Inorganic Hybrid Compounds Based on Potassium Peroxidomolybdate and Dicarboxypyridinic Acid: Structure Determination, Catalytic Properties, and Cytotoxic Effects of Eight Peroxidomolybdates in Colon and Hepatic Cancer Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Syntheses
2.2.1. Potassium Oxidodiperoxido(Pyridine-2,6-Carboxylato-N)-Molybdate(VI) (K26dcpa)
2.2.2. Dipotassium Bis(µ-Pyridine-N-Oxo-3,5-Carboxylato)Bis(Oxidodiperoxidomolybdate(VI)) Dihydrate (K35dcpa)
2.3. X-ray Powder/Single Crystal Diffraction Data Analysis
2.4. IR Measurements
2.5. X-ray Thermal Decomposition
2.6. Biological Activity
2.6.1. Cell Cultures
2.6.2. MTT Assay
2.7. Catalytic Activity
2.7.1. Oxidation of Cyclooctane
2.7.2. Baeyer–Villiger Reaction
2.8. BET
3. Results
3.1. Crystal Structure Data
Peroxidocompounds Selected for Biological and Catalytic Investigations
3.2. IR Spectra
3.3. Thermal Decomposition
3.4. BET: Specific Area and Porosity Determination
4. Biological Activity
Anti-Proliferative Activity of Compounds against Normal and Tumor Cells
5. Catalytic Activity
5.1. Oxidation of Cyclooctane
5.2. Baeyer-Villiger Reaction
- K-isoO, polymeric structure,
- K26dcpa, without N → O-Mo bonds.
6. Discussion & Conclusions
- Compounds with picolinic part or a 2,6-dicarboxypiridinic part (the most active),
- Compounds containing nicotinic or a 3,5-dicarboxypiridinic part,
- Compounds with an isonicotinic part (the least active).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pope, M.T. Structural chemistry of actinide polyoxometalates. In Structural Chemistry of Inorganic Actinide Compounds; Elsevier: Amsterdam, The Netherlands, 2007; pp. 341–361. [Google Scholar] [CrossRef]
- Dickman, M.H.; Pope, M.T. ChemInform Abstract: Peroxo and Superoxo Complexes of Chromium, Molybdenum, and Tungsten. ChemInform 2010, 26, 569–584. [Google Scholar] [CrossRef]
- Grzywa, M.; Łasocha, W.; Rutkowska-Zbik, D. Structural investigation of tetraperoxo complexes of Mo(VI) and W(VI). X-ray and theoretical studies. J. Solid State Chem. 2009, 182, 973–982. [Google Scholar] [CrossRef]
- Jakob, H.; Leininger, S.; Lehmann, T.; Jacobi, S.; Gutewort, S. Peroxo Compounds, Inorganic. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007. [Google Scholar] [CrossRef]
- Cruz, H.; Gomes, N.; Mirante, F.; Balula, S.S.; Branco, L.C. Polyoxometalates-Based Ionic Liquids ( POMs-ILs ) for Electrochemical Applications. ChemistrySelect 2020, 5, 12266–12271. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Zhang, L.; Liu, C.; Pang, H. PBA @ POM Hybrids as Efficient Electrocatalysts for the Oxygen Evolution Reaction. Chem. Asian J. 2019, 14, 2790–2795. [Google Scholar] [CrossRef] [PubMed]
- Bożek, B.; Neves, P.; Łasocha, W.; Valente, A.A. Ionic ammonium and anilinium based polymolybdate hybrid catalysts for olefin epoxidation. Appl. Catal. A Gen. 2018, 564, 13–25. [Google Scholar] [CrossRef]
- Karcz, R.; Niemiec, P.; Pamin, K.; Połtowicz, J.; Kryściak-Czerwenka, J.; Napruszewska, B.D.; Michalik-Zym, A.; Witko, M.; Tokarz-Sobieraj, R.; Serwicka, E.M. Effect of cobalt location in Keggin-type heteropoly catalysts on aerobic oxidation of cyclooctane: Experimental and theoretical study, Appl. Catal. A Gen. 2017, 542, 317–326. [Google Scholar] [CrossRef]
- Szymańska, A.; Nitek, W.; Oszajca, M.; Łasocha, W.; Pamin, K.; Połtowicz, J. Molybdenum Complexes as Catalysts for the Oxidation of Cycloalkanes with Molecular Oxygen, Catal. Letters 2016, 146, 998–1010. [Google Scholar] [CrossRef] [Green Version]
- Szymańska, A.; Nitek, W.; Mucha, D.; Karcz, R.; Pamin, K.; Połtowicz, J.; Łasocha, W. Structural studies and physico-chemical properties of new oxodiperoxomolybdenum complexes with nicotinic acid. Polyhedron 2013, 60, 39–46. [Google Scholar] [CrossRef]
- Sławińska, A.; Serda, P.; Pamin, K.; Połtowicz, J.; Łasocha, W. Synthesis, crystal structure and selected properties of a group of new peroxomolybdates. Polyhedron 2017, 121, 191–198. [Google Scholar] [CrossRef]
- Sławińska, A.; Serda, P.; Oszajca, M.; Pamin, K.; Połtowicz, J.; Łasocha, W. Synthesis, crystal structure and selected properties of two new peroxidomolybdates. Polyhedron 2020, 183, 114530. [Google Scholar] [CrossRef]
- Shen, Y.; Jiang, P.; Wai, P.T.; Gu, Q.; Zhang, W. Recent Progress in Application of Molybdenum-Based Catalysts for Epoxidation of Alkenes. Catalysts 2019, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Pamin, K.; Połtowicz, J.; Prończuk, M.; Kryściak-Czerwenka, J.; Karcz, R.; Serwicka, E.M. Keggin-Type Heteropoly Salts as Bifunctional Catalysts in Aerobic Baeyer-Villiger Oxidation. Materials 2018, 11, 1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, J.M. Design and Application of Single-Site Heterogeneous Catalysts; Imperial College Press: London, UK, 2012; pp. 141–145. [Google Scholar]
- Ahmed, K.; Saikia, G.; Begum, P.; Gogoi, S.R.; Sharma, M. Selective and Green Sulfoxidation in Water using a New Chitosan Supported Mo (VI) Complex as Heterogeneous Catalyst. ChemistrySelect 2018, 3, 12563–12575. [Google Scholar] [CrossRef]
- Authier, T. Applications of Polyoxometalates in Medicine and their Putative Mechanisms of Action. Bachelor’s Thesis, Faculdade de Ciências e Tecnologia, Faro, Portugal, 2015. [Google Scholar]
- Saad, A.; Zhu, W.; Rousseau, G.; Mialane, P.; Marrot, J. Polyoxomolybdate Bisphosphonate Heterometallic Complexes: Synthesis, Structure, and Activity on a Breast Cancer Cell Line. Chem. Eur. J. 2015, 21, 10537–10547. [Google Scholar] [CrossRef]
- Fu, L.; Gao, H.; Yan, M.; Li, S.; Li, X.; Dai, Z.; Liu, S. Polyoxometalate-Based Organic—Inorganic Hybrids as Antitumour Drugs. Small 2015, 11, 2938–2945. [Google Scholar] [CrossRef]
- Bijelic, A.; Aureliano, M.; Rompel, A. Polyoxometalates as Potential Next-Generation Metallodrugs in the Combat Against Cancer. Angew. Chem. Int. Ed. 2019, 58, 2980–2999. [Google Scholar] [CrossRef] [Green Version]
- Arefian, M.; Mirzaei, M.; Eshtiagh-Hosseini, H.; Frontera, A. A survey of the different roles of polyoxometalates in their interaction with amino acids, peptides and proteins. Dalt. Trans. 2017, 46, 6812–6829. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.S.; Mukherjea, K.K. Synthesis, characterization and DNA nuclease activity of oxo-peroxomolybdenum (VI) complexes. J. Coord. Chem. 2017, 70, 1739–1760. [Google Scholar] [CrossRef]
- Saikia, G.; Gogoi, R.; Baruah, J.; Ram, M. Peroxo Compounds of Vanadium (V) and Niobium (V) as Potent Inhibitors of Calcineurin Activity towards. ChemistrySelect 2017, 2, 5838–5848. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Altomare, A.; Cuocci, C.; Giacovazzo, C.; Moliterni, A.; Rizzi, R.; Corriero, N.; Falcicchio, A. EXPO2013: A kit of tools for phasing crystal structures from powder data. Appl. Cryst. 2013, 46, 1231–1235. [Google Scholar] [CrossRef]
- Favre-Nicolin, V.; Černý, R. FOX, free objects for crystallography’: A modular approach to ab initio structure determination from powder diffraction. Appl. Cryst. 2002, 35, 734–743. [Google Scholar] [CrossRef] [Green Version]
- Petříček, V.; Dušek, M.; Palatinus, L. Crystallographic computing system JANA2006: General features. Z. Für Krist. Cryst. Mater. 2014, 229, 345–352. [Google Scholar] [CrossRef]
- Diamond-Crystal and Molecular Structure Visualization, Crystal Impact, Dr. H. Putz & Dr. K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany, Diamond Version 3.2g. Available online: https://www.crystalimpact.de/diamond (accessed on 20 December 2021).
- Origin(Pro). Version 2019b; OriginLab Corporation: Northampton, MA, USA, 2019.
- Tyszka-Czochara, M.; Bukowska-Strakova, K.; Majka, M. Metformin and caffeic acid regulate metabolic reprogramming in human cervical carcinoma SiHa/HTB-35 cells and augment anticancer activity of Cisplatin via cell cycle regulation. Food Chem. Toxicol. 2017, 106, 260–272. [Google Scholar] [CrossRef]
- Adach, A.; Daszkiewicz, M.; Tyszka-Czochara, M. New oxovanadium(IV) complexes with pincer ligand obtained in situ: Experimental and theoretical studies on the structure, spectroscopic properties and antitumour activity. RSC Adv. 2015, 5, 85470–85479. [Google Scholar] [CrossRef]
- Tyszka-Czochara, M.; Adach, A.; Grabowski, T.; Konieczny, P.; Pasko, P.; Ortyl, J.; Świergosz, T.; Majka, M. Selective Cytotoxicity of Complexes with N, N, N-Donor Dipodal Ligand in Tumor Cells. Int. J. Mol. Sci. 2021, 22, 1802. [Google Scholar] [CrossRef]
- Structures, M. Group 6 Transition Metal Peroxo Complexes Stabilized by Polydentate Pyridinecarboxylate Ligands. Inorg. Chem. 1978, 1706, 3055–3063. [Google Scholar] [CrossRef]
- Kee, C.W. Assignment of O—O and Mo = O Stretching Frequencies of Molybdenum/Tungsten Complexes Revisited. J. Chem. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; John and Wiley and Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Bart, J.C.J.; Ragaini, V. Molybdenum—Nitrogen Bond-Strength Bond-Length Relationships. Acta Crystallogr. Sect. B 1980, 2, 1351–1354. [Google Scholar] [CrossRef]
- Available online: https://www.sigmaaldrich.com/technical-documents/articles/biology/ir-spectrum-table.html (accessed on 6 December 2021).
- Kozhevnikov, I.V. Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions. Chem Rev. 1998, 98, 171–198. [Google Scholar] [CrossRef] [PubMed]
Compound Code, (XRD Technique) | K26dcpa, Single Crystal | K35dcpa, Powder |
---|---|---|
Chemical formula | C14H7K3Mo2N2O18 | * C7H3K1MoN1O11.5 |
Structural formula, | K3[MoO(O2)2C5H3N(COO)(COOH0.5)]2 | K[MoO(O2)2C5H3NO(COO)2] 1/2H2O |
MW (g/mol) | 800.387 | 420.1 |
T(K) | 293 (2) | 293 (2) |
Wavelength, [Å] | CuKα: 1.54187 | CuKα: 1.54187 |
Crystal system, SG | triclinic, P −1 | triclinic, P −1 |
Cell parameters: | ||
a[Å] | 7.2171(3) | 11.7543(15) |
b[Å] | 8.0297(4) | 7.9665(10) |
c[Å] | 10.9099(3) | 7.3364(9) |
α[°] | 101.131(3) | 113.954(11) |
β[°] | 91.968(3) | 94.799(12) |
γ[°] | 115.509(4) | 77.705(12) |
K26dcpa | K35dcpa | |
V(Å3) | 554.93(4) | 613.41(15) |
Z, calculated density (g/cm3) | 1, 2.3949 | 2, 2.2747 |
Absorption coefficient (mm−1) | 15.314 | 12.448 |
F(000) | 391 | 410 |
Theta range | 4.172–77.447 | 5.007–79.992 |
Limiting indices | −8 ≤ h ≤ 8; −10 ≤ k ≤ 10; −13 ≤ l ≤ 13 | −9 ≤ h ≤ 8; −6 ≤ k ≤ 6; 0 ≤ l ≤ 6 |
Reflections collected/unique | 20,106/2270 | 5712 |
Completeness to theta | 77.447, 96.8% | 100% (powder sample) |
Absorption correction | None | Capillary, calc. for cylindrical sample |
Refinement method | F2 (Fsqd) | Rietveld |
Data/restraints/parameters | 2270/0/173 | 5712/38/91 |
Goodness of fit on F2 | 1.088 | 4.85 |
Final R indices [I > 2σ(I)] | R1 = 4.75, wR2 = 13.25 | - |
R indices (all data) | R1 = 4.79, wR2 = 13.32 | Rp = 0.0832, Rwp = 0.1002 |
Extinction coefficient | None | - |
Largest difference peak and hole (eA−3) | 2.054; −2.378 | −0.94; 1.18 |
CCDC | 2119275 | 2118837 |
Comp. Name, Cation | Organic Part of the Structure, Anion | Type of Anion | MW (g/mol) | Date of Publication, CCDC Number Ref. |
---|---|---|---|---|
K-nicO, K | | Dimeric, dinuclear cluster | 371.15 | 2017, 1473954 [11] |
K-picO, K | | Monomeric cluster | 353.14 | 2017, 1473958 [11] |
K-isoO, K | | Polymeric anion | 369.1 | 2020, 1943663 [12] |
K-26dcpa, K | | Monomeric cluster | 400.2 | New, 2119275 |
K-35dcpa, K | | Dimeric, dinuclear cluster | 420.1 | New, 2118837 |
NH4-nicO, NH4 | | Dimeric, dinuclear cluster | 664.1562 | 2013, 848660 [10] |
NH4-picO, NH4 | | Monomeric cluster | 332.08 | 2017, 1473955 [11] |
Na-picO, Na | | Monomeric cluster | 373.04 | 2017, 1473959 [11] |
Compound | ν(Mo=O) | νsym(O-O) | νsym(Mo-(O)2) | νasym(Mo-(O)2) | (N-Oxide) Vibrations | (Mo-N) Vibrations |
---|---|---|---|---|---|---|
K26dcpa | 955 vs | 877 s, 862 vs | 594 m, 588 m | 541 w | - | 1015 w |
K35dcpa | 962 vs | 868 vs | 585 s | 539 m | 480 w | - |
Compound | SSA (m2/g) | Pores Size BJHdes (Å) | Pores Volume BJHdes (cm3/g) |
---|---|---|---|
K26dcpa | 0.71 | 41, 74 | 0.012 |
K35dcpa | without measurement * | 29, 37, 53, 88 | 0.016 |
K-nicO | without measurement * | 53, 89, 276 | 0.011 |
K-picO | 1.2 | 62 | 0.028 |
K-isoO | 1.4 | 90, 41 | 0.041 |
NH4-nicO | 3.3 | 47, 74, 179 | 0.060 |
NH4-picO | without measurement * | 37, 73, 112, 281 | 0.0093 |
Na-picO | 2.8 | 62 | 0.043 |
Normal Cells | Human Tumor Cells | |||
---|---|---|---|---|
Hepatocellular Carcinoma | Colorectal Adenocarcinomas | |||
Fibroblast | Hep G2 | LoVo | SW 620 | |
K-nicO | 138.75 ± 2.6 | 131.17 ± 12.4 | 79.85 ± 3.3 | 66.2 ± 2.1 |
K-picO | 135.8 ± 21.6 | 157.2 ± 25.7 | 89.91 ± 4 | 66.2 ± 6.5 |
K-isoO | 139.75 ± 27.6 | 129.13 ± 9.2 | 86.79 ± 3.6 | 68.07 ± 18.6 |
K-26dcpa | 149.65 ± 16.2 | 139.75 ± 3.6 | 62.98 ± 2.8 | 55.62 ± 7 |
K-35dcpa | 148.3 ± 15.7 | 168 ± 26.7 | 97.51 ± 3 | 83.07 ± 1.9 |
NH4-nicO | 145.7 ± 17.5 | 153.83 ± 15.7 | 86.64 ± 5.2 | 67.47 ± 13.7 |
NH4-picO | 132.15 ± 13.6 | 122.17 ± 15.2 | 65.8 ± 16 | 62.11 ± 7.1 |
Na-picO | 143.35 ± 18.6 | 132.25 ± 7.6 | 78.66 ± 4.4 | 26.77 ± 8.5 |
Catalyst Number and Code | Cyclooctanone (%) | Cyclooctanol (%) | Cyclooctanone + Cyclooctanol | Cyclooctanone/Cyclooctanol |
---|---|---|---|---|
K26dcpa | 0.74 | 0.64 | 1.38 | 1.16 |
K35dcpa | 0.97 | 0.64 | 1.61 | 1.52 |
Examples from our previous studies [9,10,11,12] | ||||
K-nicO | 5.1 | 4.1 | 9.2 | 1.2 |
K-picO | 13.6 | 13.6 | 27.2 | 1.0 |
K-isoO | 1.0 | 0.8 | 1.8 | 1.25 |
NH4-nicO | 32.9 | 20.2 | 53.1 | 1.6 |
NH4-picO | 32.0 | 18.4 | 50.4 | 1.7 |
Na-picO | 12.0 | 12.8 | 24.8 | 0.9 |
Catalyst Symbol | Run No. | Conversion (%) | Yield (%) | Selectivity (%) | TON a |
---|---|---|---|---|---|
K26dcpa | I | 50.5 | 8.3 | 16.44 | 38.18 |
I | 90.9 | 87.3 | 98.68 | 401.58 | |
K35dcpa | II | 91.8 | 90.7 | 98.80 | 417.22 |
III | 71.2 | 59.2 | 83.15 | 272.32 | |
I | 48.8 | 32.9 | 67.42 | 151.34 | |
K-nicO | II | 38.1 | 24.5 | 64.30 | 112.7 |
III | 49.4 | 24.0 | 48.58 | 110.4 | |
I | 56.00 | 39.40 | 70.36 | 181.24 | |
K-picO | II | 49.20 | 18.80 | 38.21 | 86.48 |
III | 55.90 | 11.60 | 20.75 | 53.36 | |
K-isoO | I | 42.20 | 6.30 | 14.93 | 28.98 |
I | 61.70 | 37.40 | 60.62 | 172.04 | |
NH4-nicO | II | 42.40 | 29.60 | 69.81 | 136.16 |
III | 45.70 | 13.20 | 28.88 | 60.72 | |
NH4-picO | I | 62.30 | 10.40 | 16.69 | 47.84 |
I | 72.7 | 64.1 | 84.76 | 294.86 | |
Na-picO | II | 70.4 | 68.3 | 97.02 | 314.18 |
III | 56.7 | 51.9 | 91.53 | 238.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sławińska, A.; Tyszka-Czochara, M.; Serda, P.; Oszajca, M.; Ruggiero-Mikołajczyk, M.; Pamin, K.; Karcz, R.; Łasocha, W. Newly-Obtained Two Organic-Inorganic Hybrid Compounds Based on Potassium Peroxidomolybdate and Dicarboxypyridinic Acid: Structure Determination, Catalytic Properties, and Cytotoxic Effects of Eight Peroxidomolybdates in Colon and Hepatic Cancer Cells. Materials 2022, 15, 241. https://doi.org/10.3390/ma15010241
Sławińska A, Tyszka-Czochara M, Serda P, Oszajca M, Ruggiero-Mikołajczyk M, Pamin K, Karcz R, Łasocha W. Newly-Obtained Two Organic-Inorganic Hybrid Compounds Based on Potassium Peroxidomolybdate and Dicarboxypyridinic Acid: Structure Determination, Catalytic Properties, and Cytotoxic Effects of Eight Peroxidomolybdates in Colon and Hepatic Cancer Cells. Materials. 2022; 15(1):241. https://doi.org/10.3390/ma15010241
Chicago/Turabian StyleSławińska, Adrianna, Małgorzata Tyszka-Czochara, Paweł Serda, Marcin Oszajca, Małgorzata Ruggiero-Mikołajczyk, Katarzyna Pamin, Robert Karcz, and Wiesław Łasocha. 2022. "Newly-Obtained Two Organic-Inorganic Hybrid Compounds Based on Potassium Peroxidomolybdate and Dicarboxypyridinic Acid: Structure Determination, Catalytic Properties, and Cytotoxic Effects of Eight Peroxidomolybdates in Colon and Hepatic Cancer Cells" Materials 15, no. 1: 241. https://doi.org/10.3390/ma15010241
APA StyleSławińska, A., Tyszka-Czochara, M., Serda, P., Oszajca, M., Ruggiero-Mikołajczyk, M., Pamin, K., Karcz, R., & Łasocha, W. (2022). Newly-Obtained Two Organic-Inorganic Hybrid Compounds Based on Potassium Peroxidomolybdate and Dicarboxypyridinic Acid: Structure Determination, Catalytic Properties, and Cytotoxic Effects of Eight Peroxidomolybdates in Colon and Hepatic Cancer Cells. Materials, 15(1), 241. https://doi.org/10.3390/ma15010241