In Vitro Analysis of the Mechanical Properties of Hypoallergenic Denture Base Resins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Specimens
2.2. Elastic Modulus and Flexural Strength
2.3. Compressive Strength
2.4. Macrohardness
2.5. Microhardness
2.6. Average Roughness
2.7. Water Absorption and Water Solubility
2.8. Statistical Analysis
3. Results
3.1. Flexural Strength
3.2. Elastic Modulus
3.3. Compressive Strength
3.4. Macrohardness
3.5. Microhardness
3.6. Average Roughness
3.7. Water Absorption
3.8. Water Solubility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pagano, S.; Lombardo, G.; Caponi, S.; Costanzi, E.; Di Michele, A.; Bruscoli, S.; Xhimitiku, I.; Coniglio, M.; Valenti, C.; Mattarelli, M.; et al. Bio-mechanical characterization of a CAD/CAM PMMA resin for digital removable prostheses. Dent. Mater. 2021, 37, e118–e130. [Google Scholar] [CrossRef] [PubMed]
- Goiato, M.C.; Freitas, E.; dos Santos, D.; de Medeiros, R.; Sonego, M. Acrylic Resin Cytotoxicity for Denture Base—Literature Review. Adv. Clin. Exp. Med. 2015, 24, 679–686. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, P.; Rosenbauer, E.-U. Residual methyl methacrylate monomer, water sorption, and water solubility of hypoallergenic denture base materials. J. Prosthet. Dent. 2004, 92, 72–78. [Google Scholar] [CrossRef] [PubMed]
- De Martinis, M.; Sirufo, M.M.; Viscido, A.; Ginaldi, L. Food allergies and ageing. Int. J. Mol. Sci. 2019, 20, 5580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olms, C.; Yahiaoui-Doktor, M.; Remmerbach, T.W. Contact allergies to dental materials. Swiss. Dent. J. 2019, 129, 571–579. [Google Scholar]
- DeKoven, J.G.; Warshaw, E.M.; Zug, K.A.; Maibach, H.I.; Belsito, D.V.; Sasseville, D.; Taylor, J.S.; Zug, K.A.; Belsito, D.V.; Maibach, H.I.; et al. North American contact dermatitis group patch test results: 2015–2016. Dermatitis 2018, 29, 297–309. [Google Scholar] [CrossRef]
- Brasch, J.; Becker, D.; Aberer, W.; Bircher, A.; Kränke, B.; Jung, K.; Przybilla, B.; Biedermann, T.; Werfel, T.; John, S.M.; et al. Guideline contact dermatitis. Allergo J. Int. 2014, 23, 126–138. [Google Scholar] [CrossRef] [Green Version]
- Bishop, S.; Roberts, H. Methacrylate perspective in current dental practice. J. Esthet. Restor. Dent. 2020, 32, 673–680. [Google Scholar] [CrossRef]
- Syed, M.; Chopra, R.; Sachdev, V. Allergic reactions to dental materials-a systematic review. J. Clin. Diagn. Res. 2015, 9, ZE04–ZE09. [Google Scholar] [CrossRef]
- Marquardt, W.; Seiss, M.; Hickel, R.; Reichl, F.X. Volatile methacrylates in dental practices. J. Adhes. Dent. 2009, 11, 101–107. [Google Scholar]
- Aalto-Korte, K.; Alanko, K.; Kuuliala, O.; Jolanki, R. Methacrylate and acrylate allergy in dental personnel. Contact Derm. 2007, 5, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Kaaber, S. Allergy to dental materials with special reference to the use of amalgam and polymethylmethacrylate. Int. Dent. J. 1990, 40, 359–365. [Google Scholar] [PubMed]
- Chonin, A.; Stoeva, I. Allergic contact dermatitis due to methacrylates in a dental technician—A clinical case. Folia Med. 2020, 62, 626–630. [Google Scholar] [CrossRef] [PubMed]
- Kocak, O.; Gul, U. Patch test results of the dental personnel with contact dermatitis. Cutan. Ocul. Toxicol. 2014, 33, 299–302. [Google Scholar] [CrossRef]
- Boeckler, A.F.; Morton, D.; Poser, S.; Dette, K.-E. Release of dibenzoyl peroxide from polymethyl methacrylate denture base resins: An in vitro evaluation. Dent. Mater. 2008, 24, 1602–1607. [Google Scholar] [CrossRef]
- Lung, C.Y.K.; Darvell, B.W. Methyl methacrylate monomer-polymer equilibrium in solid polymer. Dent. Mater. 2007, 23, 88–94. [Google Scholar] [CrossRef]
- Lung, C.Y.K.; Darvell, B.W. Minimization of the inevitable residual monomer in denture base acrylic. Dent. Mater. 2005, 21, 1119–1128. [Google Scholar] [CrossRef]
- Lung, C.Y.K.; Darvell, B.W. Methyl methacrylate in poly(methyl methacrylate)—Validation of direct injection gas chromatography. J. Chromatogr. A 2004, 1061, 93–98. [Google Scholar] [CrossRef]
- Stoeva, I.L. Work-related skin symptoms among Bulgarian dentists. Contact Derm. 2020, 82, 380–386. [Google Scholar] [CrossRef]
- Stoeva, I. Respiratory symptoms of exposure to substances in the workplace among dental laboratory technicians. Med. Pr. 2021, 72, 105–111. [Google Scholar] [CrossRef]
- Stoeva, I.; Dencheva, M.; Mircheva, K.; Chonin, A. Respiratory symptoms of exposure to substances in the workplace among Bulgarian dental students: A self-report questionnaire survey. Folia Med. 2020, 62, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Stoeva, I.; Dencheva, M.; Georgiev, N.; Chonin, A. Skin reactions among Bulgarian dental students: A self-report questionnaire survey. Contact Derm. 2019, 81, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Uter, W.; Geier, J. Contact allergy to acrylates and methacrylates in consumers and nail artists—Data of the Information Network of Departments of Dermatology, 2004–2013. Contact Derm. 2015, 72, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Vogel, T.A.; Christoffers, W.A.; Engfeldt, M.; Bruze, M.; Coenraads, P.-J.; Schuttelaar, M.-L. Severe bullous allergic contact dermatitis caused by glycidyl methacrylate and other acrylates. Contact Derm. 2014, 71, 247–249. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, P.; An, N.; Schmage, P. Repair strength of hypoallergenic denture base materials. J. Prosthet. Dent. 2008, 100, 292–301. [Google Scholar] [CrossRef]
- Pfeiffer, P.; Rolleke, C.; Sherif, L. Flexural strength and moduli of hypoallergenic denture base materials. J. Prosthet. Dent. 2005, 93, 372–377. [Google Scholar] [CrossRef]
- Perea-Lowery, L.; Gibreel, M.; Vallittu, P.K.; Lassila, L.V. 3D-Printed vs. Heat-Polymerizing and Autopolymerizing Denture Base Acrylic Resins. Materials 2021, 14, 5781. [Google Scholar] [CrossRef]
- Lassila, L.V.J.; Vallittu, P.K. Denture base polymer Alldent Sinomer®: Mechanical properties, water sorption and release of residual compounds. J. Oral. Rehabil. 2001, 28, 607–613. [Google Scholar] [CrossRef]
- Takahashi, Y.; Chai, J.; Kawaguchi, M. Effect of water sorption on the resistance to plastic deformation of a denture base material relined with four different denture reline materials. Int. J. Prosthodont. 1998, 11, 49–54. [Google Scholar]
- Wong, D.M.S.; Cheng, L.Y.Y.; Chow, T.W.; Clark, R.K.F. Effect of processing method on the dimensional accuracy and water sorption of acrylic resin dentures. J. Prosthet. Dent. 1999, 81, 300–304. [Google Scholar] [CrossRef]
- Jerolimov, V.; Brooks, S.C.; Huggett, R.; Bates, J.F. Rapid curing of acrylic denture-base materials. Dent. Mater. 1989, 5, 18–22. [Google Scholar] [CrossRef]
- Phoenix, R.D.; Mansueto, M.A.; Ackerman, N.A.; Jones, R.E. Evaluation of mechanical and thermal properties of commonly used denture base resins. J. Prosthodont. 2004, 13, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Chandu, G.S.; Asnani, P.; Gupta, S.; Khan, M.F. Comparative evaluation of effect of water absorption on the surface properties of heat cure acrylic: An in vitro study. J. Int. Oral. Health 2015, 7, 63–68. [Google Scholar] [PubMed]
- Tuna, S.H.; Keyf, F.; Gumus, H.O.; Uzun, C. The evaluation of water sorption/solubility on various acrylic resins. Eur. J. Dent. 2008, 2, 191–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barsby, M.J. A denture base resin with low water absorption. J. Dent. 1992, 20, 240–244. [Google Scholar] [CrossRef]
- Jagger, R.G. Effect of the curing cycle on some properties of a polymethylmethacrylate denture base material. J. Oral. Rehabil. 1978, 5, 151–157. [Google Scholar] [CrossRef]
Trade Names | Main Components | Manufacturer | Processing Method | Polymerisation Process |
---|---|---|---|---|
TMS Acetal Dental | polyoxymethylene | Pressing Dental S.R.L, Dogana, San Marino | injection moulding |
|
Erkocryl | polymethyl methacrylate containing small amounts of butyl acrylate | Erkodent Erich Kopp GmbH, Pfalzgrafenweiler, Germany | injection moulding |
|
Polyan Plus® | modified methyl methacrylate | Polyapress GmbH, Altkirchen, Germany | injection moulding |
|
Sinomer | Acrylic polymer of methyl methacrylate and polyfunctional oligomers based on acrylates and urethane | ALLDENT AG, Rugell, Liechtenstein | injection |
|
Paladon 65 | polymethyl methacrylate (PMMA) | Heraeus Kulzer GmbH, Hanau, Germany | stuff press procedure |
|
PalaXpress | methacrylate-copolymer (PMMA) | Heraeus Kulzer GmbH, Hanau, Germany | injection |
|
SR-Ivocap | polymethyl methacrylate (PMMA) | Ivoclar Vivadent GmbH, Ellwangen, Germany | Injection |
|
Trade Name | Flexural Strength [MPa] | Elastic Modulus [MPa] | Compressive Strength [MPa] | Macro-Hardness [N/mm²] | Micro-Hardness [N/mm²] | Average Roughness [μm] | Water Absorption [μg/mm3] | Water Solubility [μg/mm3] |
---|---|---|---|---|---|---|---|---|
Hypoallergenic denture base resins | ||||||||
Polyan Plus® | 136.1 (10.7) | 3020 (142) | 139.6 (5.3) | 92.8 (20.7) | 200.9 (8.7) | 0.03 (0.005) | 19.36 (2.62) | 1.03 (0.16) |
Sinomer | 71.4 (8.5) | 2208 (72) | 216.9 (33.5) | 64 (26) | 129.6 (8.5) | 0.16 (0.040) | 25.01 (2.87) | 0.99 (0.14) |
TMS Acetal Dental | 123.9 (13.9) | 3311 (248) | 116.6 (24.2) | 93 (19.1) | 171.5 (3.4) | 0.38 (0.020) | 22.00 (2.95) | 1.45 (0.22) |
Erkocryl | 100.5 (16.2) | 2522 (94) | 99.8 (8.7) | 91 (7.2) | 142.9 (0.5) | 0.02 (0.005) | 25.90 (2.63) | 1.41 (0.09) |
PMMA denture base resins | ||||||||
Paladon 65 | 120.2 (5.6) | 3180 (43) | 150.1 (44.9) | 163.7 (4.2) | 185.9 (1.7) | 0.03 (0.004) | 21.36 (3.89) | 1.46 (0.13) |
SR-Ivocap | 92.8 (7.4) | 2431 (133) | 103.8 (13.5) | 123.3 (2.9) | 145.5 (3.8) | 0.08 (0.060) | 24.88 (1.33) | 1.33 (0.06) |
PalaXpress | 113.9 (9.6) | 3149 (52) | 149.2 (35.9) | 156.9 (3.4) | 170.5 (1.2) | 0.03 (0.008) | 19.02 (2.06) | 1.00 (0.14) |
df | Sum of Squares | Mean Squared | F | p-Value | |
---|---|---|---|---|---|
Flexural strength | |||||
Between groups | 4 | 14,726.415 | 3681.604 | 20.108 | <0.001 |
Within groups | 37 | 6774.475 | 183.094 | ||
Elastic modulus | |||||
Between groups | 4 | 4,650,718.365 | 1,162,679.591 | 15.324 | <0.001 |
Within groups | 37 | 2,807,354.611 | 75,874.449 | ||
Compressive strength | |||||
Between groups | 4 | 73,561.177 | 18,390.294 | 20.899 | <0.001 |
Within groups | 58 | 51,036.527 | 879.940 | ||
Macrohardness | |||||
Between groups | 4 | 73,650.485 | 18,412.621 | 51.229 | <0.001 |
Within groups | 65 | 23,362.314 | 359.420 | ||
Microhardness | |||||
Between groups | 4 | 31,120.947 | 7780.237 | 48.332 | <0.001 |
Within groups | 65 | 10,463.313 | 160.974 | ||
Average roughness | |||||
Between groups | 4 | 0.619 | 0.155 | 129.736 | <0.001 |
Within groups | 37 | 0.044 | 0.001 | ||
Water absorption | |||||
Between groups | 4 | 148.221 | 37.055 | 3.743 | 0.014 |
Within groups | 30 | 297.004 | 9.900 | ||
Water solubility | |||||
Between groups | 4 | 0.905 | 0.226 | 6.053 | <0.001 |
Within groups | 30 | 1.122 | 0.037 |
Trade Name | Polyan Plus® | Sinomer | TMS Acetal Dental | Erkocryl |
---|---|---|---|---|
Flexural strength | + | − | + | + |
Elastic modulus | + | − | + | + |
Compressive strength | + | + | + | − |
Macrohardness | − | − | − | − |
Microhardness | + | − | + | − |
Average roughness | + | − | − | + |
Water absorption | + | − | + | − |
Water solubility | + | + | + | + |
Summary | 7/8 | 2/8 | 6/8 | 4/8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hinz, S.; Bensel, T.; Bömicke, W.; Boeckler, A.F. In Vitro Analysis of the Mechanical Properties of Hypoallergenic Denture Base Resins. Materials 2022, 15, 3611. https://doi.org/10.3390/ma15103611
Hinz S, Bensel T, Bömicke W, Boeckler AF. In Vitro Analysis of the Mechanical Properties of Hypoallergenic Denture Base Resins. Materials. 2022; 15(10):3611. https://doi.org/10.3390/ma15103611
Chicago/Turabian StyleHinz, Sebastian, Tobias Bensel, Wolfgang Bömicke, and Arne F. Boeckler. 2022. "In Vitro Analysis of the Mechanical Properties of Hypoallergenic Denture Base Resins" Materials 15, no. 10: 3611. https://doi.org/10.3390/ma15103611