Role of Polyoxometalate Contents in Polypyrrole: Linear Actuation and Energy Storage
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Electropolymerization
2.3. Linear Actuation of PPy/DBS-PT Samples
2.4. Characterizations
3. Results and Discussions
3.1. Characterization of PPy/DBS-PT Films
3.2. Linear Actuation of PPy/DBS-PT Composites
3.2.1. Cyclic Voltammetry
3.2.2. Square Wave Potential Steps of PPy/DBS-PT Films
3.3. Energy Storage
4. Conclusions
Supplementary Materials
) presents current density time curves at 0.0025 Hz at two subsequence cycles (3rd–4th) at potential range E (dotted line, 1.0 V to −0.55 V) in (a). The strain ε is presented in (b) and the stress differences Δσ against applied frequencies f (0.0025–0.1 Hz) are shown in (c). Figure S5. Pristine PPy/DBS films (black line, ■) in chronopotentiometric measurements in TBAPF6-PC electrolyte showing in a: the potential time curve of two subsequent cycles (3rd–4th) at applied current density ± 0.212 A g−1. The specific capacitance Cs against the current densities (± 0.212 A g−1, ± 0.424 A g-1, ± 0.848 A g−1, ± 2.12 A g−1, ± 4.24 A g−1 and ± 8.48 A g−1, having same charge densities of ± 42.4 C g−1) are presented in (b).Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pope, M.T.; Müller, A. Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines. Angew. Chemie Int. Ed. English 1991, 30, 34–48. [Google Scholar] [CrossRef]
- Kim, Y.; Shanmugam, S. Polyoxometalate-Reduced Graphene Oxide Hybrid Catalyst: Synthesis, Structure, and Electrochemical Properties. ACS Appl. Mater. Interfaces 2013, 5, 12197–12204. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, F.; Li, S.; Zhang, L.; Sun, M. A Review of Application and Prospect for Polyoxometalate-Based Composites in Electrochemical Sensor. Inorg. Chem. Commun. 2022, 135, 109084. [Google Scholar] [CrossRef]
- Wu, J.; Wu, S.; Sun, W. Electropolymerization and Application of Polyoxometalate-Doped Polypyrrole Film Electrodes in Dye-Sensitized Solar Cells. Electrochem. Commun. 2021, 122, 106879. [Google Scholar] [CrossRef]
- Zhong, J.; Pérez-Ramírez, J.; Yan, N. Biomass Valorisation over Polyoxometalate-Based Catalysts. Green Chem. 2021, 23, 18–36. [Google Scholar] [CrossRef]
- Genovese, M.; Lian, K. Polyoxometalate Modified Inorganic-Organic Nanocomposite Materials for Energy Storage Applications: A Review. Curr. Opin. Solid State Mater. Sci. 2015, 19, 126–137. [Google Scholar] [CrossRef]
- Herrmann, S.; Aydemir, N.; Nägele, F.; Fantauzzi, D.; Jacob, T.; Travas-Sejdic, J.; Streb, C. Enhanced Capacitive Energy Storage in Polyoxometalate-Doped Polypyrrole. Adv. Funct. Mater. 2017, 27, 1700881. [Google Scholar] [CrossRef]
- Horn, M.R.; Singh, A.; Alomari, S.; Goberna-Ferrón, S.; Benages-Vilau, R.; Chodankar, N.; Motta, N.; Ostrikov, K.; Macleod, J.; Sonar, P.; et al. Polyoxometalates (POMs): From Electroactive Clusters to Energy Materials. Energy Environ. Sci. 2021, 14, 1652–1700. [Google Scholar] [CrossRef]
- Cheng, S.; Fernández-Otero, T.; Coronado, E.; Gómez-García, C.J.; Martínez-Ferrero, E.; Giménez-Saiz, C. Hybrid Material Polypyrrole/[SiCr(H2O)W11O39]5−: Electrogeneration, Properties, and Stability Under Cycling. J. Phys. Chem. B 2002, 106, 7585–7591. [Google Scholar] [CrossRef]
- Herrmann, S.; Ritchie, C.; Streb, C. Polyoxometalate—Conductive Polymer Composites for Energy Conversion, Energy Storage and Nanostructured Sensors. Dalt. Trans. 2015, 44, 7092–7104. [Google Scholar] [CrossRef]
- Peng, Z. Rational Synthesis of Covalently Bonded Organic-Inorganic Hybrids. Angew. Chemie—Int. Ed. 2004, 43, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Ma, P.; Niu, J.; Wang, J. Recent Advances in Transition-Metal-Containing Keggin-Type Polyoxometalate-Based Coordination Polymers. Coord. Chem. Rev. 2019, 392, 49–80. [Google Scholar] [CrossRef]
- Zondaka, Z.; Kesküla, A.; Tamm, T.; Kiefer, R. Polypyrrole Linear Actuation Tuned by Phosphotungstic Acid. Sens. Actuators B Chem. 2017, 247, 742–748. [Google Scholar] [CrossRef]
- Zondaka, Z.; Harjo, M.; Khan, A.; Khanh, T.T.; Tamm, T.; Kiefer, R. Optimal Phosphotungstinate Concentration for Polypyrrole Linear Actuation and Energy Storage. Multifunct. Mater. 2018, 1, 14003. [Google Scholar] [CrossRef]
- Bay, L.; West, K.; Sommer-Larsen, P.; Skaarup, S.; Benslimane, M. A Conducting Polymer Artificial Muscle with 12% Linear Strain. Adv. Mater. 2003, 15, 310–313. [Google Scholar] [CrossRef]
- Bay, L.; Jacobsen, T.; Skaarup, S.; West, K. Mechanism of Actuation in Conducting Polymers: Osmotic Expansion. J. Phys. Chem. B 2001, 105, 8492–8497. [Google Scholar] [CrossRef]
- Smela, E. Conjugated Polymer Actuators for Biomedical Applications. Adv. Mater. 2003, 15, 481–494. [Google Scholar] [CrossRef]
- Kiefer, R.; Martinez, J.G.; Kesküla, A.; Anbarjafari, G.; Aabloo, A.; Otero, T.F. Polymeric Actuators: Solvents Tune Reaction-Driven Cation to Reaction-Driven Anion Actuation. Sens. Actuators B Chem. 2016, 233, 461–469. [Google Scholar] [CrossRef]
- Vidanapathirana, K.P.; Careem, M.A.; Skaarup, S.; West, K. Ion Movement in Polypyrrole/Dodecylbenzenesulphonate Films in Aqueous and Non-aqueous Electrolytes. Solid State Ionics 2002, 154–155, 331–335. [Google Scholar] [CrossRef]
- Tran, C.B.; Zondaka, Z.; Le, Q.B.; Velmurugan, B.K.; Kiefer, R. Polypyrrole with Phosphor Tungsten Acid and Carbide-Derived Carbon: Change of Solvent in Electropolymerization and Linear Actuation. Materials 2021, 14, 6302. [Google Scholar] [CrossRef]
- Anandan Vannathan, A.; Chandewar, P.R.; Shee, D.; Sankar Mal, S. Asymmetric Polyoxometalate-Polypyrrole Composite Electrode Material for Electrochemical Energy Storage Supercapacitors. J. Electroanal. Chem. 2022, 904, 115856. [Google Scholar] [CrossRef]
- Harjo, M.; Tamm, T.; Anbarjafari, G.; Kiefer, R. Hardware and Software Development for Isotonic Strain and Isometric Stress Measurements of Linear Ionic Actuators. Polymers 2019, 11, 1054. [Google Scholar] [CrossRef] [PubMed]
- Suárez, I.J.; Otero, T.F.; Márquez, M. Diffusion Coefficients in Swelling Polypyrrole: ESCR and Cottrell Models. J. Phys. Chem. B 2005, 109, 1723–1729. [Google Scholar] [CrossRef] [PubMed]
- Kivilo, A.; Zondaka, Z.; Kesküla, A.; Rasti, P.; Tamm, T.; Kiefer, R. Electro-Chemo-Mechanical Deformation Properties of Polypyrrole/Dodecylbenzenesulfate Linear Actuators in Aqueous and Organic Electrolyte. RSC Adv. 2016, 6, 69–75. [Google Scholar] [CrossRef]
- Kiefer, R.; Le, Q.B.; Velmurugan, B.K.; Otero, T.F. Artificial Muscle Like Behavior of Polypyrrole Polyethylene Oxide Independent of Applied Potential Ranges. J. Appl. Polym. Sci. 2021, 6, 52039. [Google Scholar] [CrossRef]
- Khuyen, N.Q.; Zondaka, Z.; Harjo, M.; Torop, J.; Tamm, T.; Kiefer, R. Comparative Analysis of Fluorinated Anions for Polypyrrole Linear Actuator Electrolytes. Polymers 2019, 11, 849. [Google Scholar] [CrossRef]
- Genies, E.M.; Bidan, G.; Diaz, A.F. Spectroelectrochemical Study of Polypyrrole Films. J. Electroanal. Chem. 1983, 149, 101–113. [Google Scholar] [CrossRef]
- Heinze, J.; Frontana-Uribe, B.A.; Ludwigs, S. Electrochemistry of Conducting Polymers- Persistent Models and New Concepts Electrochemistry of Conducting Polymers s Persistent Models and New. Chem. Rev. 2010, 110, 4724–4771. [Google Scholar] [CrossRef]
- Gade, V.K.; Shirale, D.J.; Gaikwad, P.D.; Kakde, P.; Savale, P.A.; Kharat, H.J. Synthesis and Characterization of Ppy-PVS, Ppy-pTS, and Ppy-. Int. J. Polym. Mater. Polym. Biomater. 2007, 56, 37–41. [Google Scholar] [CrossRef]
- West, K.; Bay, L.; Nielsen, M.M.; Velmurugu, Y.; Skaarup, S. Electronic Conductivity of Polypyrrole-Dodecyl Benzene Sulfonate Complexes. J. Phys. Chem. B 2004, 108, 15001–15008. [Google Scholar] [CrossRef]
- Zondaka, Z.; Valner, R.; Tamm, T.; Aabloo, A.; Kiefer, R. Carbide-Derived Carbon in Polypyrrole Changing the Elastic Modulus with a Huge Impact on Actuation. RSC Adv. 2016, 6, 26380–26385. [Google Scholar] [CrossRef]
- Omastová, M.; Trchová, M.; Kovářová, J.; Stejskal, J. Synthesis and Structural Study of Polypyrroles Prepared in the Presence of Surfactants. Synth. Met. 2003, 138, 447–455. [Google Scholar] [CrossRef]
- Lee, G.J.; Lee, S.H.; Ahn, K.S.; Kim, K.H. Synthesis and Characterization of Soluble Polypyrrole with Improved Electrical Conductivity. J. Appl. Polym. Sci. 2002, 84, 2583–2590. [Google Scholar] [CrossRef]
- Lim, H.K.; Lee, S.O.; Song, K.J.; Kim, S.G.; Kim, K.H. Synthesis and Properties of Soluble Polypyrrole Doped with Dodecylbenzenesulfonate and Combined with Polymeric Additive Poly(Ethylene Glycol). J. Appl. Polym. Sci. 2005, 97, 1170–1175. [Google Scholar] [CrossRef]
- Fei, B.; Lu, H.; Hu, Z.; Xin, J.H. Solubilization, Purification and Functionalization of Carbon Nanotubes Using Polyoxometalate. Nanotechnology 2006, 17, 1589–1593. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; So, H.; Paik, W.-K. Polypyrrole Doped with Heteropolytungstate Anions. Electrochim. Acta 1994, 39, 645–650. [Google Scholar] [CrossRef]
- Baughman, R.H. Conducting Polymer Artificial Muscles. Synth. Met. 1996, 78, 339–353. [Google Scholar] [CrossRef]
- Valero, L.; Otero, T.F.; Martinez, J.G.; Martínez, J.G. Exchanged Cations and Water during Reactions in Polypyrrole Macroions from Artificial Muscles. ChemPhysChem 2014, 15, 293–301. [Google Scholar] [CrossRef]
- Zondaka, Z.; Harjo, M.; Khorram, M.S.; Rasti, P.; Tamm, T.; Kiefer, R. Polypyrrole/Carbide-Derived Carbon Composite in Organic Electrolyte: Characterization as a Linear Actuator. React. Funct. Polym. 2018, 131, 414–419. [Google Scholar] [CrossRef]
- Ue, M. Mobility and Ionic Association of Lithium and Quaternary Ammonium Salts in Propylene Carbonate and / -Butyrolactone. J. Electrochem. Soc. 1994, 141, 3336–3342. [Google Scholar] [CrossRef]
- Yeager, H.L.; Fedyk, J.D.; Parker, R.J. Spectroscopic Studies of Ionic Solvation in Propylene Carbonate. J. Phys. Chem. 1973, 77, 2407–2410. [Google Scholar] [CrossRef]
- Chaban, V. Solvation of the Fluorine Containing Anions and Their Lithium Salts in Propylene Carbonate and Dimethoxyethane. J. Mol. Model. 2015, 21, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, R.; Chu, S.Y.; Kilmartin, P.A.; Bowmaker, G.A.; Cooney, R.P.; Travas-Sejdic, J. Mixed-Ion Linear Actuation Behaviour of Polypyrrole. Electrochim. Acta 2007, 52, 2386–2391. [Google Scholar] [CrossRef]
- Kiefer, R.; Kilmartin, P.A.; Bowmaker, G.A.; Cooney, R.P.; Travas-Sejdic, J. Actuation of Polypyrrole Films in Propylene Carbonate Electrolytes. Sens. Actuators B Chem. 2007, 125, 628–634. [Google Scholar] [CrossRef]
- Kiefer, R.; Kesküla, A.; Martinez, J.G.; Anbarjafari, G.; Torop, J.; Otero, T.F. Interpenetrated Triple Polymeric Layer as Electrochemomechanical Actuator: Solvent Influence and Diffusion Coefficient of Counterions. Electrochim. Acta 2017, 230, 461–469. [Google Scholar] [CrossRef]
- Otero, T.F. Towards Artificial Proprioception from Artificial Muscles Constituted by Self-Sensing Multi-Step Electrochemical Macromolecular Motors. Electrochim. Acta 2021, 368, 137576. [Google Scholar] [CrossRef]
- Shoa, T.; Madden, J.D.W.; Mirfakhrai, T.; Alici, G.; Spinks, G.M.; Wallace, G.G. Electromechanical Coupling in Polypyrrole Sensors and Actuators. Sens. Actuators A Phys. 2010, 161, 127–133. [Google Scholar] [CrossRef]
- Otero, T.F.; Boyano, I. Comparative Study of Conducting Polymers by the ESCR Model. J. Phys. Chem. B 2003, 107, 6730–6738. [Google Scholar] [CrossRef]
- West, B.J.; Otero, T.F.; Shapiro, B.; Smela, E. Chronoamperometric Study of Conformational Relaxation in PPy(DBS). J. Phys. Chem. B 2009, 113, 1277–1293. [Google Scholar] [CrossRef][Green Version]
- Gao, J.; Shang, K.; Ding, Y.; Wen, Z. Material and Configuration Design Strategies Towards Flexible and Wearable Power Supply Devices: A Review. J. Mater. Chem. A 2021, 9, 8950–8965. [Google Scholar] [CrossRef]
- Wang, F.; Wu, X.; Yuan, X.; Liu, Z.; Zhang, Y.; Fu, L.; Zhu, Y.; Zhou, Q.; Wu, Y.; Huang, W. Latest Advances in Supercapacitors: From New Electrode Materials to Novel Device Designs. Chem. Soc. Rev. 2017, 46, 6816–6854. [Google Scholar] [CrossRef] [PubMed]
- Afzal, A.; Abuilaiwi, F.A.; Habib, A.; Awais, M.; Waje, S.B.; Atieh, M.A. Polypyrrole/Carbon Nanotube Supercapacitors: Technological Advances and Challenges. J. Power Sources 2017, 352, 174–186. [Google Scholar] [CrossRef]
- Skunik, M.; Chojak, M.; Rutkowska, I.A.; Kulesza, P.J. Improved Capacitance Characteristics during Electrochemical Charging of Carbon Nanotubes Modified with Polyoxometallate Monolayers. Electrochim. Acta 2008, 53, 3862–3869. [Google Scholar] [CrossRef]
- Wang, M.; Yu, Y.; Cui, M.; Cao, X.; Liu, W.; Wu, C.; Liu, X.; Zhang, T.; Huang, Y. Development of Polyoxometalate-Anchored 3D Hybrid Hydrogel for High-Performance Flexible Pseudo-Solid-State Supercapacitor. Electrochim. Acta 2020, 329, 135181. [Google Scholar] [CrossRef]
- Manjunatha, N.; Imadadulla, M.; Lokesh, K.S.; Venugopala Reddy, K.R. Synthesis and Electropolymerization of Tetra-[β-(2-benzimidazole)] and Tetra-[β-(2-(1-(4- aminophenyl))benzimidazole)] Embedded Cobalt Phthalocyanine and Their Supercapacitance Behaviour. Dye. Pigment. 2018, 153, 213–224. [Google Scholar] [CrossRef]
- Oraon, R.; De Adhikari, A.; Tiwari, S.K.; Nayak, G.C. Nanoclay-Based Hierarchical Interconnected Mesoporous CNT/PPy Electrode with Improved Specific Capacitance for High Performance Supercapacitors. Dalt. Trans. 2016, 45, 9113–9126. [Google Scholar] [CrossRef] [PubMed]
- Kesküla, A.; Heinmaa, I.; Tamm, T.; Aydemir, N.; Travas-Sejdic, J.; Peikolainen, A.-L.; Kiefer, R. Improving the Electrochemical Performance and Stability of Polypyrrole by Polymerizing. Polymers 2020, 12, 136. [Google Scholar] [CrossRef]





), at a frequency of 0.005 Hz in (a) strain, ε, and in (b) stress, σ, against time, t, at potential range, E (dotted line, 1.0 to −0.55 V) of two subsequent cycles (3rd and 4th). The strain, ε, is shown in (c) and the stress differences, Δσ, in (d) against the charge density upon oxidation, Qox. Negative strain as shown in (c) refers to the main expansion upon reduction and positive strain to expansion upon oxidation. The dashed lines in (c) represent the linear fit and are shown for orientation only.
), at a frequency of 0.005 Hz in (a) strain, ε, and in (b) stress, σ, against time, t, at potential range, E (dotted line, 1.0 to −0.55 V) of two subsequent cycles (3rd and 4th). The strain, ε, is shown in (c) and the stress differences, Δσ, in (d) against the charge density upon oxidation, Qox. Negative strain as shown in (c) refers to the main expansion upon reduction and positive strain to expansion upon oxidation. The dashed lines in (c) represent the linear fit and are shown for orientation only.
), showing diffusion coefficients upon oxidation, Dox, in (a) and diffusion coefficients upon reduction, Dred, in (b) against applied frequency at 0.0025–0.1 Hz. The dashed lines represent the linear fit and are shown for orientation only.
), showing diffusion coefficients upon oxidation, Dox, in (a) and diffusion coefficients upon reduction, Dred, in (b) against applied frequency at 0.0025–0.1 Hz. The dashed lines represent the linear fit and are shown for orientation only.
). The potential time curves at applied current density of ±0.22 A g−1 (0.0025 Hz) of PPy/DBS-PT films (two subsequent cycles 3rd and 4th) are shown in (a). The specific capacitance, Cs, against applied current densities, j (±0.22 A g−1 to ±8.8 A g−1, 0.0025–0.1 Hz, having the same charge density of ±44 C g−1), is presented in (b).
). The potential time curves at applied current density of ±0.22 A g−1 (0.0025 Hz) of PPy/DBS-PT films (two subsequent cycles 3rd and 4th) are shown in (a). The specific capacitance, Cs, against applied current densities, j (±0.22 A g−1 to ±8.8 A g−1, 0.0025–0.1 Hz, having the same charge density of ±44 C g−1), is presented in (b).
| PPy/DBS-PT PTA Concentration | Conductivity (S cm−1) | Elastic Modulus (MPa) | ||
|---|---|---|---|---|
| BA | AA | BA | AA | |
| 0.005 M | 7.4 ± 0.7 | 9.5 ± 0.8 | 2.45 ± 0.12 | 1.61 ± 0.12 |
| 0.01 M | 9.7 ± 0.8 | 14.4 ± 1.3 | 1.54 ± 0.18 | 0.39 ± 0.03 |
| 0.05 M | 11.3 ± 0.9 | 10.2 ± 0.9 | 0.82 ± 0.07 | 0.67 ± 0.05 |
| PPy/DBS-PT PTA (M) | Qox (C cm−3) | ε (%) | Δσ (MPa) | |||
|---|---|---|---|---|---|---|
| 0.0025 Hz | 0.01 Hz | 0.0025 Hz | 0.01 Hz | 0.0025 Hz | 0.01 Hz | |
| 0.005 | 94.3 ± 8.1 | 32.5 ± 2.7 | 5.8 ± 0.5 | 2.5 ± 0.23 | 0.21 ± 0.02 | 0.58 ± 0.05 |
| 0.01 | 100.1 ± 9.2 | 34.4 ± 3.1 | 12.8 ± 1.1 | 5.0 ± 0.44 | 0.36 ± 0.03 | 0.65 ± 0.06 |
| 0.05 | 107.0 ± 9.8 | 35.7 ± 3.3 | −4.8 ± 0.4 | −1.8 ± 0.13 | 0.15 ± 0.01 | 0.1 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, Q.B.; Zondaka, Z.; Harjo, M.; Nguyen, N.T.; Kiefer, R. Role of Polyoxometalate Contents in Polypyrrole: Linear Actuation and Energy Storage. Materials 2022, 15, 3619. https://doi.org/10.3390/ma15103619
Le QB, Zondaka Z, Harjo M, Nguyen NT, Kiefer R. Role of Polyoxometalate Contents in Polypyrrole: Linear Actuation and Energy Storage. Materials. 2022; 15(10):3619. https://doi.org/10.3390/ma15103619
Chicago/Turabian StyleLe, Quoc Bao, Zane Zondaka, Madis Harjo, Ngoc Tuan Nguyen, and Rudolf Kiefer. 2022. "Role of Polyoxometalate Contents in Polypyrrole: Linear Actuation and Energy Storage" Materials 15, no. 10: 3619. https://doi.org/10.3390/ma15103619
APA StyleLe, Q. B., Zondaka, Z., Harjo, M., Nguyen, N. T., & Kiefer, R. (2022). Role of Polyoxometalate Contents in Polypyrrole: Linear Actuation and Energy Storage. Materials, 15(10), 3619. https://doi.org/10.3390/ma15103619

