Oxygen-Plasma-Induced Hetero-Interface NiFe2O4/NiMoO4 Catalyst for Enhanced Electrochemical Oxygen Evolution
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chu, S.; Majumdar, A. Opportunities and Challenges for a Sustainable Energy Future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S.Z. Design of Electrocatalysts for Oxygen- and Hydrogen-Involving Energy Conversion Reactions. Chem. Soc. Rev. 2015, 44, 2060–2086. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, P.; Shao, Q.; Huang, X. Recent Progress in Advanced Electrocatalyst Design for Acidic Oxygen Evolution Reaction. Adv. Mater. 2021, 33, 2004243. [Google Scholar] [CrossRef] [PubMed]
- Suen, N.T.; Hung, S.F.; Quan, Q.; Zhang, N.; Xu, Y.J.; Chen, H.M. Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives. Chem. Soc. Rev. 2017, 46, 337–365. [Google Scholar] [CrossRef]
- Gao, L.; Cui, X.; Sewell, C.D.; Li, J.; Lin, Z. Recent Advances in Activating Surface Reconstruction for the High-Efficiency Oxygen Evolution Reaction. Chem. Soc. Rev. 2021, 50, 8428–8469. [Google Scholar] [CrossRef]
- Li, S.; Gao, Y.; Li, N.; Ge, L.; Bu, X.; Feng, P. Transition Metal-Based Bimetallic Mofs and Mof-Derived Catalysts for Electrochemical Oxygen Evolution Reaction. Energy Environ. Sci. 2021, 14, 1897–1927. [Google Scholar] [CrossRef]
- Song, J.; Wei, C.; Huang, Z.F.; Liu, C.; Zeng, L.; Wang, X.; Xu, Z.J. A Review on Fundamentals for Designing Oxygen Evolution Electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214. [Google Scholar] [CrossRef]
- Zou, X.; Zhang, Y. Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting. Chem. Soc. Rev. 2015, 44, 5148–5180. [Google Scholar] [CrossRef]
- Yan, D.; Li, Y.; Huo, J.; Chen, R.; Dai, L.; Wang, S. Defect Chemistry of Nonprecious-Metal Electrocatalysts for Oxygen Reactions. Adv. Mater. 2017, 29, 1606459. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, B. Recent Advances in Transition Metal Phosphide Nanomaterials: Synthesis and Applications in Hydrogen Evolution Reaction. Chem. Soc. Rev. 2016, 45, 1529–1541. [Google Scholar] [CrossRef]
- Su, X.; Wang, Y.; Zhou, J.; Gu, S.; Li, J.; Zhang, S. Operando Spectroscopic Identification of Active Sites in Nife Prussian Blue Analogues as Electrocatalysts: Activation of Oxygen Atoms for Oxygen Evolution Reaction. J. Am. Chem. Soc. 2018, 140, 11286–11292. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Huang, C.Q.; Ju, Y.M.; Gao, M.R.; Liu, J.W.; An, D.; Cui, C.H.; Zheng, Y.R.; Li, W.X.; Yu, S.H. Phase-Selective Syntheses of Cobalt Telluride Nanofleeces for Efficient Oxygen Evolution Catalysts. Angew. Chem. Int. Ed. 2017, 56, 7769–7773. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, B.; Wang, Y.; Ye, M.Y.; van Aken, P.A.; Cheng, C.; Thomas, A. Oxygen-Evolving Catalytic Atoms on Metal Carbides. Nat. Mater. 2021, 20, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- Aralekallu, S.; Sajjan, V.A.; Palanna, M.; CP, K.P.; Hojamberdiev, M.; Sannegowda, L.K. Ni foam-supported azo linkage cobalt phthalocyanine as an efficient electrocatalyst for oxygen evolution reaction. J. Power Sources 2020, 449, 227516. [Google Scholar] [CrossRef]
- Duan, Y.; Yu, Z.Y.; Hu, S.J.; Zheng, X.S.; Zhang, C.T.; Ding, H.H.; Hu, B.C.; Fu, Q.Q.; Yu, Z.L.; Zheng, X.; et al. Scaled-up Synthesis of Amorphous Nifemo Oxides and Their Rapid Surface Reconstruction for Superior Oxygen Evolution Catalysis. Angew. Chem. Int. Ed. Engl. 2019, 58, 15772–15777. [Google Scholar] [CrossRef]
- Kuznetsov, D.A.; Han, B.; Yu, Y.; Rao, R.R.; Hwang, J.; Román-Leshkov, Y.; Shao-Horn, Y. Tuning Redox Transitions Via Inductive Effect in Metal Oxides and Complexes, and Implications in Oxygen Electrocatalysis. Joule 2018, 2, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chu, D.; Dong, H.; Baker, D.R.; Jiang, R. Boosted Oxygen Evolution Reactivity by Igniting Double Exchange Interaction in Spinel Oxides. J. Am. Chem. Soc. 2020, 142, 50–54. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, L.; Huang, Y.C.; Dong, C.L.; Lin, H.J.; Chen, C.T.; Tjeng, L.H.; Hu, Z. Voltage- and Time-Dependent Valence State Transition in Cobalt Oxide Catalysts During the Oxygen Evolution Reaction. Nat. Commun. 2020, 11, 1984. [Google Scholar] [CrossRef]
- Zhou, D.; Li, P.; Lin, X.; McKinley, A.; Kuang, Y.; Liu, W.; Lin, W.F.; Sun, X.; Duan, X. Layered Double Hydroxide-Based Electrocatalysts for the Oxygen Evolution Reaction: Identification and Tailoring of Active Sites, and Superaerophobic Nanoarray Electrode Assembly. Chem. Soc. Rev. 2021, 50, 8790–8817. [Google Scholar] [CrossRef]
- Gao, M.; Sheng, W.; Zhuang, Z.; Fang, Q.; Gu, S.; Jiang, J.; Yan, Y. Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst. J. Am. Chem. Soc. 2014, 136, 7077–7084. [Google Scholar] [CrossRef]
- Yang, H.; Gong, L.; Wang, H.; Dong, C.; Wang, J.; Qi, K.; Liu, H.; Guo, X.; Xia, B.Y. Preparation of Nickel-Iron Hydroxides by Microorganism Corrosion for Efficient Oxygen Evolution. Nat. Commun. 2020, 11, 5075. [Google Scholar] [CrossRef] [PubMed]
- Govind Rajan, A.; Martirez, J.M.P.; Carter, E.A. Facet-Independent Oxygen Evolution Activity of Pure Beta-Niooh: Different Chemistries Leading to Similar Overpotentials. J. Am. Chem. Soc. 2020, 142, 3600–3612. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.H.; Shi, Z.X.; Feng, J.X.; Tong, Y.X.; Li, G.R. Activating CoOOH Porous Nanosheet Arrays by Partial Iron Substitution for Efficient Oxygen Evolution Reaction. Angew. Chem. Int. Ed. 2018, 57, 2672–2676. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Yu, C.; Zhou, S.; Zhao, C.; Huang, H.; Yang, J.; Liu, Z.; Zhao, J.; Qiu, J. Ultrasensitive Iron-Triggered Nanosized Fe-CoOOH Integrated with Graphene for Highly Efficient Oxygen Evolution. Adv. Energy Mater. 2017, 7, 1602148. [Google Scholar] [CrossRef]
- Huang, Z.-F.; Song, J.; Du, Y.; Xi, S.; Dou, S.; Nsanzimana, J.M.V.; Wang, C.; Xu, Z.J.; Wang, X. Chemical and Structural Origin of Lattice Oxygen Oxidation in Co-Zn Oxyhydroxide Oxygen Evolution Electrocatalysts. Nat. Energy 2019, 4, 329–338. [Google Scholar] [CrossRef]
- Sun, H.; Yan, Z.; Liu, F.; Xu, W.; Cheng, F.; Chen, J. Self-Supported Transition-Metal-Based Electrocatalysts for Hydrogen and Oxygen Evolution. Adv. Mater. 2020, 32, 1806326. [Google Scholar] [CrossRef]
- Peugeot, A.; Creissen, C.E.; Karapinar, D.; Tran, H.N.; Schreiber, M.; Fontecave, M. Benchmarking of Oxygen Evolution Catalysts on Porous Nickel Supports. Joule 2021, 5, 1281–1300. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, H.; Jiang, M.; Kang, Q.; Zhou, W.; Wang, P.; Zhou, F. Boron Enhances Oxygen Evolution Reaction Activity over Ni Foam-Supported Iron Boride Nanowires. J. Mater. Chem. A 2020, 8, 13638–13645. [Google Scholar] [CrossRef]
- Li, R.-Q.; Wan, X.-Y.; Chen, B.-L.; Cao, R.-Y.; Ji, Q.-H.; Deng, J.; Qu, K.-G.; Wang, X.-B.; Zhu, Y.-C. Hierarchical Ni3N/Ni0.2Mo0.8N Heterostructure Nanorods Arrays as Efficient Electrocatalysts for Overall Water and Urea Electrolysis. Chem. Eng. J. 2021, 409, 128240. [Google Scholar] [CrossRef]
- Wang, C.; Tian, Y.; Gu, Y.; Xue, K.-H.; Sun, H.; Miao, X.; Dai, L. Plasma-Induced Moieties Impart Super-Efficient Activity to Hydrogen Evolution Electrocatalysts. Nano Energy 2021, 85, 106030. [Google Scholar] [CrossRef]
- Yin, Z.; Sun, Y.; Zhu, C.; Li, C.; Zhang, X.; Chen, Y. Bimetallic Ni-Mo Nitride Nanotubes as Highly Active and Stable Bifunctional Electrocatalysts for Full Water Splitting. J. Mater. Chem. A 2017, 5, 13648–13658. [Google Scholar] [CrossRef]
- Durr, R.N.; Maltoni, P.; Tian, H.; Jousselme, B.; Hammarstrom, L.; Edvinsson, T. From NiMoO4 to γ-NiOOH: Detecting the Active Catalyst Phase by Time Resolved in Situ and Operando Raman Spectroscopy. ACS Nano 2021, 15, 13504–13515. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cui, W.; Liu, Q.; Xing, Z.; Asiri, A.M.; Sun, X. Recent Progress in Cobalt-Based Heterogeneous Catalysts for Electrochemical Water Splitting. Adv. Mater. 2016, 28, 215–230. [Google Scholar] [CrossRef] [PubMed]
- Suryanto, B.H.R.; Wang, Y.; Hocking, R.K.; Adamson, W.; Zhao, C. Overall Electrochemical Splitting of Water at the Heterogeneous Interface of Nickel and Iron Oxide. Nat. Commun. 2019, 10, 5599. [Google Scholar] [CrossRef]
- Guo, Y.; Yuan, P.; Zhang, J.; Xia, H.; Cheng, F.; Zhou, M.; Li, J.; Qiao, Y.; Mu, S.; Xu, Q. Co2P-CoN Double Active Centers Confined in N-Doped Carbon Nanotube: Heterostructural Engineering for Trifunctional Catalysis toward Her, ORR, OER, and Zn-Air Batteries Driven Water Splitting. Adv. Funct. Mater. 2018, 28, 1805641. [Google Scholar] [CrossRef]
- Wu, A.; Gu, Y.; Xie, Y.; Tian, C.; Yan, H.; Wang, D.; Zhang, X.; Cai, Z.; Fu, H. Effective Electrocatalytic Hydrogen Evolution in Neutral Medium Based on 2d MoP/MoS2 Heterostructure Nanosheets. ACS Appl. Mater. Interfaces 2019, 11, 25986–25995. [Google Scholar] [CrossRef]
- Lu, K.; Liu, Y.; Lin, F.; Cordova, I.A.; Gao, S.; Li, B.; Peng, B.; Xu, H.; Kaelin, J.; Coliz, D.; et al. LixNiO/Ni Heterostructure with Strong Basic Lattice Oxygen Enables Electrocatalytic Hydrogen Evolution with Pt-Like Activity. J. Am. Chem. Soc. 2020, 142, 12613–12619. [Google Scholar] [CrossRef]
- Sun, J.; Xu, W.; Lv, C.; Zhang, L.; Shakouri, M.; Peng, Y.; Wang, Q.; Yang, X.; Yuan, D.; Huang, M.; et al. Co/MoN Hetero-Interface Nanoflake Array with Enhanced Water Dissociation Capability Achieves the Pt-Like Hydrogen Evolution Catalytic Performance. Appl. Catal. B 2021, 286, 119882. [Google Scholar] [CrossRef]
- Lv, J.; Wang, L.; Li, R.; Zhang, K.; Zhao, D.; Li, Y.; Li, X.; Huang, X.; Wang, G. Constructing a Hetero-Interface Composed of Oxygen Vacancy-Enriched Co3O4 and Crystalline-Amorphous Nife-LDH for Oxygen Evolution Reaction. ACS Catal. 2021, 11, 14338–14351. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Zheng, H.; Li, R.; Tang, Y.; Li, B.; Zhu, C.; You, L.; Gao, M.R.; Liu, Z.; et al. Embedding Ultrafine Metal Oxide Nanoparticles in Monolayered Metal-Organic Framework Nanosheets Enables Efficient Electrocatalytic Oxygen Evolution. ACS Nano 2020, 14, 1971–1981. [Google Scholar] [CrossRef]
- CP, K.P.; Aralekallu, S.; Sajjan, V.A.; Palanna, M.; Kumar, S.; Sannegowda, L.K. Non-precious cobalt phthalocyanine-embedded iron ore electrocatalysts for hydrogen evolution reactions. Sustain. Energy Fuels 2021, 5, 1448–1457. [Google Scholar] [CrossRef]
- Bai, L.; Lee, S.; Hu, X. Spectroscopic and Electrokinetic Evidence for a Bifunctional Mechanism of the Oxygen Evolution Reaction. Angew. Chem. Int. Ed. 2021, 60, 3095–3103. [Google Scholar] [CrossRef] [PubMed]
- Clament Sagaya Selvam, N.; Kwak, S.J.; Choi, G.H.; Oh, M.J.; Kim, H.; Yoon, W.-S.; Lee, W.B.; Yoo, P.J. Unveiling the Impact of Fe Incorporation on Intrinsic Performance of Reconstructed Water Oxidation Electrocatalyst. ACS Energy Lett. 2021, 6, 4345–4354. [Google Scholar] [CrossRef]
- Zhong, L.; Bao, Y.; Feng, L. Fe-Doping Effect on CoTe Catalyst with Greatly Boosted Intrinsic Activity for Electrochemical Oxygen Evolution Reaction. Electrochim. Acta 2019, 321, 134656. [Google Scholar] [CrossRef]
- Guo, D.; Luo, Y.; Yu, X.; Li, Q.; Wang, T. High Performance NiMoO4 Nanowires Supported on Carbon Cloth as Advanced Electrodes for Symmetric Supercapacitors. Nano Energy 2014, 8, 174–182. [Google Scholar] [CrossRef]
- Choi, J.; Kim, D.; Zheng, W.; Yan, B.; Li, Y.; Lee, L.Y.S.; Piao, Y. Interface Engineered NiFe2O4−X/NiMoO4 Nanowire Arrays for Electrochemical Oxygen Evolution. Appl. Catal. B 2021, 286, 119857. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, C.; Lu, X.; Luo, F.; Wang, C.; Alsaedi, A.; Hayat, T. Porous NiFe-Oxide Nanocubes Derived from Prussian Blue Analogue as Efficient Adsorbents for the Removal of Toxic Metal Ions and Organic Dyes. J. Hazard. Mater. 2019, 379, 120786. [Google Scholar] [CrossRef]
- Wang, J.; Sun, M.; Wang, F.; Zhang, X.; Song, J.; Zhang, W.; Li, M. Essential Role of the Interfacial Interaction in the Core-Shell Electrode for Its Enhanced Electrochemical Performance. Chem. Eng. J. 2021, 426, 130895. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, Y.; Malgras, V.; Ji, Q.; Jiang, D.; Qi, R.; Ariga, K.; Yamauchi, Y.; Liu, J.; Jiang, J.S.; et al. Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. Angew. Chem. Int. Ed. 2016, 55, 8228–8234. [Google Scholar] [CrossRef]
- Yilmaz, G.; Tan, C.F.; Lim, Y.-F.; Ho, G.W. Pseudomorphic Transformation of Interpenetrated Prussian Blue Analogs into Defective Nickel Iron Selenides for Enhanced Electrochemical and Photo-Electrochemical Water Splitting. Adv. Energy Mater. 2019, 9, 1802983. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, Z.; Krishankant; Rai, R.; Kumar, R.; Maruyama, T.; Bera, C.; Bagchi, V. Unraveling a Graphene Exfoliation Technique Analogy in the Making of Ultrathin Nickel-Iron Oxyhydroxides@Nickel Foam to Promote the OER. ACS Appl. Mater. Interfaces 2021, 13, 55281–55291. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Santra, S.; Nanda, K.K. In Situ Fabrication of a Nickel/Molybdenum Carbide-Anchored N-Doped Graphene/Cnt Hybrid: An Efficient (Pre)Catalyst for OER and HER. ACS Appl. Mater. Interfaces 2018, 10, 35025–35038. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zou, Z.; Huang, J.; Gao, F. NiFe2O4 Nanoparticles/Nife Layered Double-Hydroxide Nanosheet Heterostructure Array for Efficient Overall Water Splitting at Large Current Densities. ACS Appl. Mater. Interfaces 2018, 10, 26283–26292. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.Y.; Lopes, P.P.; Farinazzo Bergamo Dias Martins, P.; He, H.; Kawaguchi, T.; Zapol, P.; You, H.; Tripkovic, D.; Strmcnik, D.; Zhu, Y.; et al. Dynamic Stability of Active Sites in Hydr(Oxy)Oxides for the Oxygen Evolution Reaction. Nat. Energy 2020, 5, 222–230. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, Z.; Shao, W.; Gao, Y.; Wang, W.; Ma, T.; Ma, L.; Li, S.; Cheng, C.; Zhao, C. Interfacial Atom-Substitution Engineered Transition-Metal Hydroxide Nanofibers with High-Valence Fe for Efficient Electrochemical Water Oxidation. Angew. Chem. Int. Ed. 2022, 61, 202115331. [Google Scholar]
- Zhang, B.; Wang, L.; Cao, Z.; Kozlov, S.M.; García de Arquer, F.P.; Dinh, C.T.; Li, J.; Wang, Z.; Zheng, X.; Zhang, L.; et al. High-Valence Metals Improve Oxygen Evolution Reaction Performance by Modulating 3d Metal Oxidation Cycle Energetics. Nat. Catal. 2020, 3, 985–992. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chuang, C.H.; Hsiao, L.Y.; Yeh, M.H.; Ho, K.C. Oxygen Plasma Activation of Carbon Nanotubes-Interconnected Prussian Blue Analogue for Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2020, 12, 42634–42643. [Google Scholar] [CrossRef]
- Nieuwoudt, M.K.; Comins, J.D.; Cukrowski, I. The Growth of the Passive Film on Iron in 0.05 M NaOH Studied in Situ by Raman Micro-Spectroscopy and Electrochemical Polarisation. Part I: Near-Resonance Enhancement of the Raman Spectra of Iron Oxide and Oxyhydroxide Compounds. J. Raman Spectrosc. 2011, 42, 1335–1339. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Kim, I.-S.; Cho, H.-S.; Kim, C.-H.; Lee, Y.-K. Resolving Potential-Dependent Degradation of Electrodeposited Ni(OH)2 Catalysts in Alkaline Oxygen Evolution Reaction (OER): In Situ XANES Studies. Appl. Catal. B 2021, 284, 119729. [Google Scholar] [CrossRef]
- Mansour, A.; Melendres, C.J.S.S.S. Characterization of Electrochemically Prepared γ-NiOOH by XPS. Surf. Sci. Spectra 1994, 3, 271–278. [Google Scholar] [CrossRef]
- Tan, B.J.; Klabunde, K.J.; Sherwood, P.M. X-ray Photoelectron Spectroscopy Studies of Solvated Metal Atom Dispersed Catalysts. Monometallic Iron and Bimetallic Iron-Cobalt Particles on Alumina. Chem. Mater. 1990, 2, 186–191. [Google Scholar] [CrossRef]
- Welsh, I.D.; Sherwood, P.M.A. Photoemission and Electronic Structure of FeOOH: Distinguishing between Oxide and Oxyhydroxide. Phys. Rev. B 1989, 40, 6386. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, N.; Peng, W.; Lv, L.; Xu, P.; Wang, C.; Li, J.; Luo, W.; Zhou, L. Oxygen-Plasma-Induced Hetero-Interface NiFe2O4/NiMoO4 Catalyst for Enhanced Electrochemical Oxygen Evolution. Materials 2022, 15, 3688. https://doi.org/10.3390/ma15103688
Xu N, Peng W, Lv L, Xu P, Wang C, Li J, Luo W, Zhou L. Oxygen-Plasma-Induced Hetero-Interface NiFe2O4/NiMoO4 Catalyst for Enhanced Electrochemical Oxygen Evolution. Materials. 2022; 15(10):3688. https://doi.org/10.3390/ma15103688
Chicago/Turabian StyleXu, Nuo, Wei Peng, Lei Lv, Peng Xu, Chenxu Wang, Jiantao Li, Wen Luo, and Liang Zhou. 2022. "Oxygen-Plasma-Induced Hetero-Interface NiFe2O4/NiMoO4 Catalyst for Enhanced Electrochemical Oxygen Evolution" Materials 15, no. 10: 3688. https://doi.org/10.3390/ma15103688
APA StyleXu, N., Peng, W., Lv, L., Xu, P., Wang, C., Li, J., Luo, W., & Zhou, L. (2022). Oxygen-Plasma-Induced Hetero-Interface NiFe2O4/NiMoO4 Catalyst for Enhanced Electrochemical Oxygen Evolution. Materials, 15(10), 3688. https://doi.org/10.3390/ma15103688