The Electrical Response of Real Dielectrics: Using the Voltage Ramp Method as a Straightforward Diagnostic Tool for Polymeric Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. VRM Modelling
2.1.1. A Single Capacitor as the Ideal Insulator
2.1.2. A Dielectric with Resistive Losses
3. Results and Discussion
3.1. Quasi-Ideal Insulator Material
3.2. Insulator Materials with Leakage
3.3. Ceramic–Polymer Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Standard Test Methods for DC Resistance or Conductance of Insulating Materials. Designation D257, 99(2005); ASTM Standard: West Conshohocken, PA, USA, 2014. [CrossRef]
- Comoretto, D.; Parravicini, G.B.; Tognini, P.; Stella, A.; Moggio, I.; Carpaneto, L.; Castellano, M.; Carnasciali, M.M.; Dellepiane, G. Dielectric, Raman, calorimetric and X-ray diffraction studies of a polycarbazolyldiacetylene. Synth. Met. 2001, 116, 207–211. [Google Scholar] [CrossRef]
- Invernizzi, F.; Patrini, M.; Vezzù, K.; Di Noto, V.; Mustarelli, P. Polyurethane-based electrostrictive nanocomposites as high strain-low frequency mechanical energy harvesters. J. Phys. Chem. C 2018, 122, 21115–21123. [Google Scholar] [CrossRef]
- Volume and Surface Resistivity Measurements of Insulating Materials Using the 6517B Electrometer/High Resistance Meter. Application Note by Keithley Instruments Inc., Cleveland, OH, USA (2011). Available online: https://download.tek.com/document/Volume-SurfaceResistivity_AppNote_1KW-61175-0.pdf (accessed on 1 April 2019).
- Milano, U. A Programmable DC High Voltage Ramped Test System for Electrical Insulation. Report N REC-ERC-78-7 Bureau of Reclamation, Engineering and Research Center, Denver, CO, USA (1978). Available online: https://www.usbr.gov/tsc/techreferences/rec/REC-ERC-78-07.pdf (accessed on 10 February 2020).
- Csepes, G.; Hamos, I.; Brooks, R.; Karius, V. Practical foundations of the RVM (recovery voltage method for oil/paper insulation diagnosis). In Proceedings of the 1998 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Cat. No.98CH36257), Atlanta, GA, USA, 25–28 October 1998; Volume 1, p. 345. [Google Scholar] [CrossRef]
- Martinez, M.; Pleite, J. Improvement of RVM Test Interpretation Using a Debye Equivalent Circuit. In Proceedings of the 2019 6th International Advanced Research Workshop on Trasformers (ARWtr), Cordoba, Spain, 7–9 October 2019; IEEE Xplore: Piscataway Township, NJ, USA, 2019; pp. 105–110. [Google Scholar] [CrossRef] [Green Version]
- Yelhekar, T.D.; Druzin, M.; Karlsson, U.; Blomqvist, E.; Johansson, S. How to Properly Measure a Current-Voltage Relation?—Interpolation vs. Ramp Methods Applied to Studies of GABAA Receptors. Front. Cell. Neurosci. 2016, 10, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moiz, S.A.; Khan, I.A.; Younis, W.A.; Karimov, K.S. Space charge-limited current model for Polymers. In Conducting Polymers; IntechOpen: London, UK, 2016; Available online: https://www.intechopen.com/chapters/50847 (accessed on 15 March 2018).
- Von Hippel, A.R. Dielectric and Waves; John Wiley and Sons: Hoboken, NJ, USA; Chapman and Hall: London, UK, 1959. [Google Scholar]
- LTspice Simulation Software XVII (x64) (17.0.34.0) by Analog Device, Inc. (Norwood, MA, USA). Available online: https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html (accessed on 1 November 2021).
- Maier, G. Low dielectric constant polymers for microelectronics. Prog. Polym. Sci. 2001, 26, 3–65. [Google Scholar] [CrossRef]
- Sundaram, N.; Lee, G.S.; Goeckner, M.; Overzet, L.J. Study and optimization of PECVD films containing fluorine and carbon as ultralow dielectric constant interlayer dielectrics in ULSI devices. J. Vac. Sci. Technol. B 2015, 33, 042202. [Google Scholar] [CrossRef] [Green Version]
Slope (nA/s) | Slope error (nA/s) | Offset (nA) | Offset Error (nA) | Degrees of Freedom | R | ||
---|---|---|---|---|---|---|---|
Fit 1 | 4.92 | 0.02 | −11.63 | 0.46 | 108 | 0.998 | 1.015 |
Fit 2 | −4.92 | 0.02 | 375.78 | 1.25 | 99 | 0.999 | 1.015 |
Fit 3 | 4.93 | 0.03 | −590.57 | 3.79 | 91 | 0.997 | 1.013 |
Fit 4 | −4.94 | 0.02 | 868.66 | 3.16 | 100 | 0.999 | 1.013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitulo, P.; Zanoletti, M.; Morina, R.; Callegari, D.; Quartarone, E.; Viola, R.; Comoretto, D.; Dulio, S.; Mustarelli, P.; Patrini, M. The Electrical Response of Real Dielectrics: Using the Voltage Ramp Method as a Straightforward Diagnostic Tool for Polymeric Composites. Materials 2022, 15, 3829. https://doi.org/10.3390/ma15113829
Vitulo P, Zanoletti M, Morina R, Callegari D, Quartarone E, Viola R, Comoretto D, Dulio S, Mustarelli P, Patrini M. The Electrical Response of Real Dielectrics: Using the Voltage Ramp Method as a Straightforward Diagnostic Tool for Polymeric Composites. Materials. 2022; 15(11):3829. https://doi.org/10.3390/ma15113829
Chicago/Turabian StyleVitulo, Paolo, Michele Zanoletti, Riccardo Morina, Daniele Callegari, Eliana Quartarone, Riccardo Viola, Davide Comoretto, Sergio Dulio, Piercarlo Mustarelli, and Maddalena Patrini. 2022. "The Electrical Response of Real Dielectrics: Using the Voltage Ramp Method as a Straightforward Diagnostic Tool for Polymeric Composites" Materials 15, no. 11: 3829. https://doi.org/10.3390/ma15113829
APA StyleVitulo, P., Zanoletti, M., Morina, R., Callegari, D., Quartarone, E., Viola, R., Comoretto, D., Dulio, S., Mustarelli, P., & Patrini, M. (2022). The Electrical Response of Real Dielectrics: Using the Voltage Ramp Method as a Straightforward Diagnostic Tool for Polymeric Composites. Materials, 15(11), 3829. https://doi.org/10.3390/ma15113829