Performance, Reaction Pathway and Kinetics of the Enhanced Dechlorination Degradation of 2,4-Dichlorophenol by Fe/Ni Nanoparticles Supported on Attapulgite Disaggregated by a Ball Milling–Freezing Process
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials and Chemicals
2.2. Preparation of Materials
2.2.1. Preparation of D-ATP
2.2.2. Preparation of D-ATP-nFe/Ni
2.3. Characterizations of Materials
2.4. Degradation Experiments of 2,4-DCP
3. Results and Discussion
3.1. Structure and Physicochemical Properties of Materials
3.1.1. TEM Analyses
3.1.2. XRD Analyses
3.1.3. Physicochemical Properties
3.2. Enhancement Effect of 2,4-DCP Dechlorination by nFe/Ni Supported on Disaggregated Attapulgite
3.3. Reaction Pathway and Kinetics of 2,4-DCP Dechlorination by nFe/Ni Supported on the Disaggregated Attapulgite
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, X.; Li, Y.; Wei, G.; He, H.; Stucki, J.W.; Ma, L.; Pentrakova, L.; Pentrák, M.; Zhu, J. Heterogeneous reduction of 2-chloronitrobenzene by co-substituted magnetite coupled with aqueous Fe2+: Performance, factors, and mechanism. ACS Earth Space Chem. 2019, 3, 728–737. [Google Scholar] [CrossRef]
- Scott-Emuakpor, E.O.; Kruth, A.; Todd, M.J.; Raab, A.; Paton, G.I.; Macphee, D.E. Remediation of 2,4-dichlorophenol contaminated water by visible light-enhanced WO3 photoelectrocatalysis. Appl. Catal. B Environ. 2012, 123–124, 433–439. [Google Scholar] [CrossRef]
- Pera-Titus, M.; Garca-Molina, V.; Baos, M.; Giménez, J.; Esplugas, S. Degradation of chlorophenols by means of advanced oxidation processes: A general review. Appl. Catal. B Environ. 2004, 47, 219–256. [Google Scholar] [CrossRef]
- Suzuko, Y.; Saori, M.; Kenzi, H. Photocatalytic degradation of trichloroethylene in water using TiO2 pellets. Water Res. 2001, 35, 1022–1028. [Google Scholar]
- Wang, J.; Qian, Y. Microbial degradation of 4-chlorophenol by microorganisms entrapped in carrageenan-chitosan gels. Chemosphere 1999, 38, 3109–3117. [Google Scholar]
- Ezzatahmadi, N.; Ayoho, G.A.; Millar, G.J.; Speight, R.; Yan, C.; Li, J.; Li, S.; Zhu, J.; Xi, Y. Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: A review. Chem. Eng. J. 2017, 312, 335–350. [Google Scholar] [CrossRef] [Green Version]
- Ezzatahmadi, N.; Marshall, D.L.; Hou, K.; Ayoko, G.A.; Millar, G.J.; Xi, Y. Simultaneous adsorption and degradation of 2,4-dichlorophenol on sepiolite-supported bimetallic Fe/Ni nanoparticles. J. Environ. Chem. Eng. 2019, 7, 102955. [Google Scholar] [CrossRef]
- Tosco, T.; Papini, M.P.; Viggi, C.C.; Sethi, R. Nanoscale zerovalent iron particles for groundwater remediation: A review. J. Clean. Prod. 2014, 77, 10–21. [Google Scholar] [CrossRef]
- Johnson, R.L.; Thoms, R.B.; Johnson, R.O.; Nurmi, J.T.; Tratnyek, P.G. Mineral precipitation upgradient from a zero-valent iron permeable reactive barrier. Ground Water Monit. R. 2008, 28, 56–64. [Google Scholar] [CrossRef]
- Mukherjee, R.; Kumar, R.; Sinha, A.; Lama, Y.; Saha, A.K. A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation. Environ. Sci. Technol. 2015, 46, 443–466. [Google Scholar] [CrossRef]
- Fu, F.; Dionysiou, D.D.; Liu, H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater. 2014, 267, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Sun, Y.; Qin, H.; Li, J.; Lo, I.; He, D.; Dong, H. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994–2014). Water Res. 2015, 75, 1–83. [Google Scholar] [CrossRef]
- Phenrat, T.; Saleh, N.; Sirk, K.; Tilton, R.D.; Lowey, G.V. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ. Sci. Technol. 2007, 41, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Tratnyek, P.G.; Johnson, T.L.; Scherer, M.M.; Eykholt, G.R. Remediating ground water with zero-valent metals: Chemical considerations in barrier design. Ground Water Monit. R. 1997, 17, 109–114. [Google Scholar] [CrossRef]
- Shi, L.; Xin, Z.; Chen, Z. Removal of Chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res. 2011, 45, 886–892. [Google Scholar] [CrossRef]
- Bhowmick, S.; Chakraborty, S.; Mondal, P.; Renterghem, W.V.; Berghe, S.V.; Roman-Ross, G.; Chatterjee, D.; Iglesias, M. Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism. Che. Eng. J. 2014, 243, 14–23. [Google Scholar] [CrossRef]
- Llu, Z.; Zhang, F.; Hoekman, S.K.; Liu, T.; Gai, C.; Peng, N. Homogeneously dispersed zerovalent iron nanoparticles supported on hydrochar-derived porous carbon: Simple, in situ synthesis and use for dechlorination of PCBs. ACS Sustai. Chem. Eng. 2016, 4, 3261–3267. [Google Scholar]
- Zhu, B.; Lim, T.; Feng, J. Reductive dechlorination of 1,2,4-trichlorobenzene with palladized nanoscale Fe0 particles supported on chitosan and silica. Chemosphere 2006, 65, 1137–1145. [Google Scholar] [CrossRef]
- Jegadeesan, G.; Mondal, K.; Lalvani, S.B. Arsenate remediation using nanosized modified zerovalent iron particles. Environ. Prog. 2005, 24, 289–296. [Google Scholar] [CrossRef]
- Liu, M.; Huang, R.; Li, C.; Che, M.; Su, R.; Li, S.; Yu, J.; Qi, W.; He, Z. Continuous rapid dechlorination of p-chlorophenol by Fe-Pd nanoparticles promoted by procyanidin. Che. Eng. Sci. 2019, 201, 121–131. [Google Scholar] [CrossRef]
- Xu, J.; Wang, W.; Wang, A. A novel approach for dispersion palygorskite aggregates into nanorods via adding freezing process into extrusion and homogenization treatment. Powder Technol. 2013, 249, 157–162. [Google Scholar] [CrossRef]
- Tian, G.; Wang, W.; Wang, D.; Wang, Q.; Wang, A. Novel environment friendly inorganic red pigments based on attapulgite. Powder Technol. 2017, 315, 60–67. [Google Scholar] [CrossRef]
- Liu, Z.; Gu, C.; Ye, M.; Bian, Y.; Cheng, Y.; Wang, F.; Yang, X.; Song, Y.; Jiang, X. Debromination of polybrominated diphenyl ethers by attapulgite-supported Fe/Ni bimetallic nanoparticles: Influencing factors, kinetics and mechanism. J. Hazard. Mater. 2015, 298, 328–337. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Y.; Jin, Q.; Wang, X.; Yang, J. Adsorption studies of a water soluble dye, Reactive Red MF-3B, using sonication-surfactant-modified attapulgite clay. J. Hazard. Mater. 2007, 143, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, J.; Wang, Q.; Wang, A. Disaggregation of palygorskite crystal bundles via high-pressure homogenization. Appl. Clay Sci. 2011, 54, 118–123. [Google Scholar] [CrossRef]
- Chen, J.; Jin, Y.; Qian, Y.; Hu, T. A new approach to efficiently disperse aggregated palygorskite into single crystals via adding freeze process into traditional extrusion treatment. IEEE Trans. Nanotechnol. 2010, 9, 6–10. [Google Scholar] [CrossRef]
- Li, A.; Zhang, J.; Wang, A. Utilization of starch and clay for the preparation of superabsorbent composite. Bioresour. Technol. 2007, 98, 327–332. [Google Scholar] [CrossRef]
- An, L.; Wang, A. Synthesis and properties of clay-based superabsorbent composite. Eur. Polym. J. 2005, 41, 163–167. [Google Scholar]
- Xu, B.; Huang, W.; Pei, Y.; Chen, Z.; Kraft, A.; Reuben, R.; Hosson, J.; Fu, Y. Mechanical properties of attapulgite clay reinforced polyurethane shape-memory nanocomposites. Eur. Polym. J. 2009, 45, 1904–1911. [Google Scholar] [CrossRef]
- Kim, Y.H.; Carraway, E.R. Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environ. Sci. Technol. 2000, 34, 2014–2017. [Google Scholar] [CrossRef]
- Xu, C.; Rui, L.; Chen, L.; Tang, J. Enhanced dechlorination of 2,4-dichlorophenol by recoverable Ni/Fe-Fe3O4 nanocomposites. J. Environ. Sci. China 2016, 48, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.; Liu, H.; Wang, J.; Zhao, D.; Fan, X. A new insight into the main mechanism of 2,4-dichlorophenol dechlorination by Fe/Ni nanoparticles. Sci. Total Environ. 2019, 697, 133996.1–133996.8. [Google Scholar] [CrossRef] [PubMed]
- Chun, C.L.; Baer, D.R.; Matson, D.W.; Amonette, I.S.; Penn, R.L. Characterization and reactivity of iron nanoparticles prepared with added Cu, Pd, and Ni. Environ. Sci. Technol. 2010, 44, 5079–5085. [Google Scholar] [CrossRef] [PubMed]
Material | Surface Area /(m2·g−1) | Pore Volume /(cm3/g) | Nanoparticle Size (nm) |
---|---|---|---|
ATP | 128.73 | 0.40 | 46.61 |
D-ATP | 151.28 | 0.52 | 39.66 |
nFe/Ni | 14.15 | 0.09 | 423.94 |
ATP-nFe/Ni | 69.39 | 0.24 | 86.46 |
D-ATP-nFe/Ni | 97.10 | 0.32 | 54.51 |
Material | * FeT% | ** Fe% | Fe/FeT% |
---|---|---|---|
nFe/Ni | 95.8 | 49.3 | 51.5 |
D-ATP-nFe/Ni | 40.2 | 39.3 | 97.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Wang, J.; Liu, H.; Fan, X. Performance, Reaction Pathway and Kinetics of the Enhanced Dechlorination Degradation of 2,4-Dichlorophenol by Fe/Ni Nanoparticles Supported on Attapulgite Disaggregated by a Ball Milling–Freezing Process. Materials 2022, 15, 3957. https://doi.org/10.3390/ma15113957
Wu H, Wang J, Liu H, Fan X. Performance, Reaction Pathway and Kinetics of the Enhanced Dechlorination Degradation of 2,4-Dichlorophenol by Fe/Ni Nanoparticles Supported on Attapulgite Disaggregated by a Ball Milling–Freezing Process. Materials. 2022; 15(11):3957. https://doi.org/10.3390/ma15113957
Chicago/Turabian StyleWu, Hongdan, Junwen Wang, Hong Liu, and Xianyuan Fan. 2022. "Performance, Reaction Pathway and Kinetics of the Enhanced Dechlorination Degradation of 2,4-Dichlorophenol by Fe/Ni Nanoparticles Supported on Attapulgite Disaggregated by a Ball Milling–Freezing Process" Materials 15, no. 11: 3957. https://doi.org/10.3390/ma15113957