Feasibility Study on the Bamboo Grid Instead of Geogrid for Soil–Rock Mixture Subgrade Reinforcing
Abstract
:1. Introduction
2. Mechanical Properties Test of Bamboo Reinforcement
2.1. Parallel-to-Grain Tensile Strength
2.2. Shear Strength
2.3. Flexural Strength
2.4. Comparison of Mechanical Properties between Bamboo Reinforcement and Uniaxial Geogrid
3. Field Pull-Out Test
3.1. Soil–Rock Mixture Material
3.2. Antiseptic Treatment of Bamboo Reinforcement and Preparation of Bamboo Grid
3.3. Test Procedure
3.4. Results and Discussion
3.4.1. Working Condition of Soil–Rock Mixture-Uniaxial Bamboo Grid
3.4.2. Working Condition of Soil–Rock Mixture-Biaxial Bamboo Grid
4. Summary and Conclusions
- (1)
- The tensile force (2% elongation) of the bamboo reinforcement is 50.21 kN/m, and its average tensile strength is 236.01 MPa. At the same time, bamboo reinforcement has excellent shear and flexural properties. This confirms that bamboo reinforcement has great application potential as a reinforcement material for subgrade.
- (2)
- Different from the geogrid, the shear stress between the bamboo reinforced grid and the soil is affected by the surface friction and the side friction. The friction force between the uniaxial bamboo grid and the soil–rock mixture filler plays a dominant role in the interfacial shear strength, and the pull-out curve generally shows a strain-softening type. For the biaxial bamboo grid, due to the existence of the internal square apertures, the bite force between the filler and the reinforcement significantly affects the interfacial shear strength. The bite force gradually develops as the displacement increases, and the pull-out curve usually exhibits a strain-hardening type. The magnitude of the vertical load not only affects the peak value of shear stress but also affects the displacement when the peak value occurs.
- (3)
- Compared with the uniaxial bamboo grid, the use of the biaxial bamboo grid shows a higher friction coefficient of the reinforcement soil interface. In contrast, the reinforcement effect of the biaxial bamboo grid is more significant. When the biaxial bamboo grid is used, the interfacial cohesion is increased from 3.6 kPa (uniaxial) to 8.9 kPa (biaxial), and the friction angle is increased from 20.6° (uniaxial) to 31.9° (biaxial).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Zhang, M.; Zhang, C.; Hou, L. Formulating A GIS-Based Geometric Design Quality Assessment Model for Mountain Highways. Accid. Anal. Prev. 2021, 157, 106172. [Google Scholar] [CrossRef]
- Shou, K.J.; Lin, J.F. Multi-Scale Landslide Susceptibility Analysis Along a Mountain Highway in Central Taiwan. Eng. Geol. 2016, 212, 120–135. [Google Scholar] [CrossRef]
- Qian, J.F.; Yao, Y.S.; Li, J.; Xiao, H.B.; Luo, S.P. Resilient Properties of soil–rock Mixture Materials: Preliminary Investigation of the Effect of Composition and Structure. Materials 2020, 13, 1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, W.W.; Yang, H.R.; Wang, L.; Hu, R.L. Numerical Simulations of the soil–rock Mixture Mechanical Properties Considering the Influence of Rock Block Proportions by PFC2D. Materials 2021, 14, 5442. [Google Scholar] [CrossRef]
- Xing, K.; Zhou, Z.; Yang, H.; Liu, B.C. Macro-Meso Freeze-Thaw Damage Mechanism of soil–rock Mixtures with Different Rock Contents. Int. J. Pavement Eng. 2020, 21, 9–19. [Google Scholar] [CrossRef]
- Hu, F.; Li, Z.Q.; Tian, Y.F.; Hu, R.L. Failure Patterns and Morphological soil–rock Interface Characteristics of Frozen soil–rock Mixtures under Compression and Tension. Appl. Sci. 2021, 11, 461. [Google Scholar] [CrossRef]
- Zhou, Z.; Xing, K.; Yang, H.; Wang, H. Damage Mechanism of soil–rock Mixture after Freeze-Thaw Cycles. J. Cent. South Univ. 2019, 26, 13–24. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, H.; Boldini, D.; Liu, C.; He, C.; Wu, S. 3D Modelling of soil–rock Mixtures Considering the Morphology and Fracture Characteristics of Breakable Blocks. Comput. Geotech. 2021, 132, 103985. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, H.; Xing, K.; Gao, W.Y. Prediction Models of the Shear Modulus of Normal or Frozen soil–rock Mixtures. Geomech. Eng. 2018, 15, 783–791. [Google Scholar]
- Zhao, Y.X.; Liu, Z.X. Study of Material Composition Effects on the Mechanical Properties of soil–rock Mixtures. Adv. Civ. Eng. 2018, 2018, 3854727. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, Y.; Qiu, P.; Dong, Q. Experimental Study on Nominal Compactness of soil–rock Mixture. Mater. Res. Innov. 2014, 18 (Suppl. S2), S2-853–S2-856. [Google Scholar] [CrossRef]
- Fragaszy, R.J.; Su, W.; Siddiqi, F.H. Effects of Oversize Particles on the Density of Clean Granular Soils. Geotech. Test. J. 1990, 13, 106–114. [Google Scholar]
- Li, Y.; Huang, R.; Chan, L.S.; Chen, J. Effects of Particle Shape on Shear Strength of Clay-Gravel Mixture. KSCE J. Civ. Eng. 2013, 17, 712–717. [Google Scholar] [CrossRef]
- Foti, D.; Paparella, F. Impact Behavior of Structural Elements in Concrete Reinforced with PET Grids. Mech. Res. Commun. 2014, 57, 57–66. [Google Scholar] [CrossRef]
- Roy, S.S.; Deb, K. Effects of Aspect Ratio of Footings on Bearing Capacity for Geogrid-Reinforced Sand Over Soft Soil. Geosynth. Int. 2017, 24, 362–382. [Google Scholar]
- Mehrjardi, G.T.; Ghanbari, A.; Mehdizadeh, H. Experimental Study on the Behaviour of Geogrid-reinforced Slopes with Respect to Aggregate Size. Geotext. Geomembr. 2016, 44, 862–871. [Google Scholar] [CrossRef]
- Sweta, K.; Hussaini, S.K.K. Effect of Shearing Rate on the Behavior of Geogrid-reinforced Railroad Ballast under Direct Shear Conditions. Geotext. Geomembr. 2018, 46, 251–256. [Google Scholar] [CrossRef]
- Das, B.M. Use of Geogrid in the Construction of Railroads. Innov. Infrastruct. Solut. 2016, 1, 15. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.B. Long-term Lateral Displacement of Geosynthetic-Reinforced Soil Segmental Retaining Walls. Geotext. Geomembr. 2012, 32, 18–27. [Google Scholar] [CrossRef]
- Esmaeili, M.; Zakeri, J.A.; Babaei, M. Laboratory and Field Investigation of the Effect of Geogrid-reinforced Ballast on Railway Track Lateral Resistance. Geotext. Geomembr. 2017, 45, 23–33. [Google Scholar] [CrossRef]
- Gao, J.; Liu, L.; Zhang, Y.; Xie, X. Deformation Mechanism and Soil Evolution Analysis Based on Different Types Geogrid Reinforced Foundation. Constr. Build. Mater. 2022, 331, 127322. [Google Scholar] [CrossRef]
- Murugesan, S.; Rajagopal, K. Studies on the Behavior of Single and Group of Geosynthetic Encased Stone Columns. J. Geotech. Geoenviron. 2010, 136, 129–139. [Google Scholar] [CrossRef]
- Benmebarek, S.; Berrabah, F.; Benmebarek, N. Effect of Geosynthetic Reinforced Embankment on Locally Weak Zones by Numerical Approach. Comput. Geotech. 2015, 65, 115–125. [Google Scholar] [CrossRef]
- Yoo, C. Performance of Geosynthetic-Encased Stone Columns in Embankment Construction: Numerical Investigation. J. Geotech. Geoenviron. 2010, 136, 1148–1160. [Google Scholar] [CrossRef]
- Xu, X.X.; Xu, P.Y.; Zhu, J.J.; Li, H.T.; Xiong, Z.H. Bamboo Construction Materials: Carbon Storage and Potential to Reduce Associated CO2 Emissions. Sci. Total Environ. 2022, 814, 152697. [Google Scholar] [CrossRef]
- Moroz, J.G.; Lissel, S.L.; Hagel, M.D. Performance of Bamboo Reinforced Concrete Masonry Shear Walls. Constr. Build. Mater. 2014, 64, 125–137. [Google Scholar] [CrossRef]
- Ghavami, K. Ultimate Load Behaviour of Bamboo-reinforced Light Weight Concrete Beams. Cem. Concr. Compos. 1995, 17, 281–288. [Google Scholar] [CrossRef]
- Ghavami, K. Bamboo as Reinforcement in Structural Concrete Elements. Cem. Concr. Compos. 2005, 27, 637–649. [Google Scholar] [CrossRef]
- Li, Y.; Shen, H.; Shan, W.; Han, T. Flexural Behavior of Lightweight Bamboo–Steel Composite Slabs. Thin Walled Struct. 2012, 53, 83–90. [Google Scholar] [CrossRef]
- Wahan, M.Y.; Zhang, Z.; Meng, X.; Gao, Y.; Ji, X. Mechanical Behavior of GFRP-Bamboo Composite Shear Connections. Constr. Build. Mater. 2022, 331, 127333. [Google Scholar] [CrossRef]
- Ye, F.; Fu, W.X. Physical and Mechanical Characterization of Fresh Bamboo for Infrastructure Projects. J. Mater. Civ. Eng. 2017, 30, 05017004. [Google Scholar] [CrossRef]
- Akhil, K.S.; Sankar, N.; Chandrakaran, S. Behaviour of Model Footing on Bamboo Mat-Reinforced Sand Beds. Soils Found. 2020, 59, 1324–1335. [Google Scholar] [CrossRef]
- Dai, Z.H.; Guo, W.D.; Zheng, G.X.; Ou, Y.; Chen, Y.J. Moso Bamboo Soil-Nailed Wall and Its 3D Nonlinear Numerical Analysis. Int. J. Geomech. 2016, 16, 04016012. [Google Scholar] [CrossRef]
- Hegde, A.; Sitharam, T.G. Use of Bamboo in Soft-Ground Engineering and Its Performance Comparison with Geosynthetics: Experimental Studies. J. Mater. Civ. Eng. 2015, 27, 04014256. [Google Scholar] [CrossRef]
- Ahirwar, S.K.; Mandal, J.N. Experimental Study on Bamboo Grid Reinforced Copper Slag Overlying Soft Subgrade. Constr. Build. Mater. 2021, 306, 124758. [Google Scholar] [CrossRef]
- JG/T 199-2007; Test Methods for Physical and Mechanical Properties of Bamboo Used in Building. Standards Press of China: Beijing, China, 2007.
- GB/T 17689-2008; Geosynthetics and Plastic Geogrids. Standards Press of China: Beijing, China, 2008.
- Dang, F.; Liu, H.; Wang, X. Application of Bamboo as Tensile Reinforcement to Strengthening of Embankment of Soft Soils. Chinese J. Geotech. Eng. 2013, 35 (Suppl. S2), 44–49. [Google Scholar]
- IS 9096; Preservation of Bamboo for Structural Purposes-Code of Practice. Bureau of Indian Standards: New Delhi, India, 2006.
- Gnanaharan, R. Preservative Treatment Methods for Bamboo: A Review; Technical Report; Kerala Forest Research Institute: Trissur, India, 2000; Volume 177, pp. 1–20. [Google Scholar]
Label | b/mm | t/mm | Calculation Formula | P/N | ft/MPa |
---|---|---|---|---|---|
T1 | 4.12 | 10.28 | where “ft” is the tensile strength (unit MPa) and “P” is the failure load (unit N). | 9280 | 219.11 |
T2 | 3.95 | 9.62 | 9760 | 256.85 | |
T3 | 3.86 | 9.77 | 9630 | 255.36 | |
T4 | 4.05 | 10.22 | 8810 | 212.85 | |
T5 | 4.15 | 10.16 | 1046 | 232.09 | |
T6 | 3.88 | 10.18 | 8840 | 223.81 | |
Average value | 4.00 | 10.04 | - | 9463 | 236.01 |
Label | l/mm | t/mm | Calculation Formula | P/N | fs/MPa |
---|---|---|---|---|---|
S1 | 40 | 10 | where “fs” is the shear strength (unit MPa) and “l” is the shear length (unit mm). | 4236 | 10.59 |
S2 | 42 | 10 | 4510 | 10.74 | |
S3 | 44 | 10 | 4870 | 11.07 | |
S4 | 45 | 10 | 5127 | 11.40 |
t/mm | 8 | 10 | 12 |
---|---|---|---|
ff/MPa | 117.49 | 123.87 | 121.26 |
Type | Tensile Force (at 2% Elongation)/kN·m−1 | ft/MPa | fs/MPa | ff/MPa |
---|---|---|---|---|
Bamboo reinforcement | 50.21 | 236.01 | 10.59 | 123.87 |
TGDG80 | ≥26.0 | - | - | - |
TGDG120 | ≥36.0 | - | - | - |
Fraction/mm | 0–2 | 2–5 | 5–10 | 10–20 | 20–40 | 40–60 |
---|---|---|---|---|---|---|
Content/% | 24 | 18 | 27 | 16 | 8 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Chen, S.; Xie, C.; Zhong, W.; Yin, H.; Luo, Z.; Luo, B.; Liang, B.; He, M.; Huang, J. Feasibility Study on the Bamboo Grid Instead of Geogrid for Soil–Rock Mixture Subgrade Reinforcing. Materials 2022, 15, 4047. https://doi.org/10.3390/ma15124047
Hu Y, Chen S, Xie C, Zhong W, Yin H, Luo Z, Luo B, Liang B, He M, Huang J. Feasibility Study on the Bamboo Grid Instead of Geogrid for Soil–Rock Mixture Subgrade Reinforcing. Materials. 2022; 15(12):4047. https://doi.org/10.3390/ma15124047
Chicago/Turabian StyleHu, Yong, Shanling Chen, Cekun Xie, Weilin Zhong, Hongda Yin, Zhengdong Luo, Biao Luo, Bin Liang, Min He, and Junjie Huang. 2022. "Feasibility Study on the Bamboo Grid Instead of Geogrid for Soil–Rock Mixture Subgrade Reinforcing" Materials 15, no. 12: 4047. https://doi.org/10.3390/ma15124047
APA StyleHu, Y., Chen, S., Xie, C., Zhong, W., Yin, H., Luo, Z., Luo, B., Liang, B., He, M., & Huang, J. (2022). Feasibility Study on the Bamboo Grid Instead of Geogrid for Soil–Rock Mixture Subgrade Reinforcing. Materials, 15(12), 4047. https://doi.org/10.3390/ma15124047