Impacts of Aggregate Gradation on the Volumetric Parameters and Rutting Performance of Asphalt Concrete Mixtures
Abstract
:1. Introduction
2. Materials and Experiments
2.1. Materials
2.1.1. Aggregates and Filler
2.1.2. Asphalt Binder
2.2. Mix Design
2.3. Experimental Program and Testing Methods
2.3.1. Vibrating Compaction Test of Coarse Aggregates
2.3.2. Marshall Compaction Test
2.3.3. Wheel-Tracking Test
3. Results and Discussion
3.1. Results of Vibrating and Marshall Compaction Tests
3.2. Results of Wheel-Tracking Tests
3.3. Discussion
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, K. Optimization of Aggregate Gradation for High-Performing Hot Mix Asphalt. Ph.D. Thesis, University of Rhode Island, Kingston, RI, USA, 2008. [Google Scholar]
- Swathi, M.; Andiyappan, T.; Guduru, G.; Reddy, M.A.; Kuna, K.K. Design of asphalt mixes with steel slag aggregates using the Bailey method of gradation selection. Constr. Build. Mater. 2021, 279, 122426. [Google Scholar] [CrossRef]
- Foreman, J. Effect of Voids in the Mineral Aggregate on Laboratory Rutting Behavior of Asphalt Mixtures. Master’s Thesis, University of Arkansas, Fayetteville, AR, USA, 2008. [Google Scholar]
- Roberts, F.; Kandhal, P.; Brown, E. Hot Mix Asphalt Materials, Mixture Design and Construction, 2nd ed.; NAPA Research and Education Foundation: Greenbelt, MD, USA, 1996. [Google Scholar]
- The Asphalt Institute. Mix Design Methods for Asphalt Concrete and Other Hot-Mix Types; Manual Series No. 2 (MS-2); The Asphalt Institute: Lexington, KY, USA, 1995. [Google Scholar]
- The Asphalt Institute. Superpave Mix Design; Superpave Series No. 2 (SP-2); The Asphalt Institute: Lexington, KY, USA, 2001. [Google Scholar]
- Shen, S.; Yu, H. Characterize packing of aggregate particles for paving materials: Particle size impact. Constr. Build. Mater. 2011, 25, 1362–1368. [Google Scholar] [CrossRef]
- Chen, S.; Liao, M. Evaluation of internal resistance in hot-mix asphalt (HMA) concrete. Constr. Build. Mater. 2002, 16, 313–319. [Google Scholar] [CrossRef]
- Alvarez, A.; Martin, A.; Estakhri, C. A review of mix design and evaluation research for permeable friction course mixtures. Constr. Build. Mater. 2011, 25, 1159–1166. [Google Scholar] [CrossRef]
- Park, D. Effects of Aggregate Gradation and Angularity on VMA and Rutting Resistance. Master’s Thesis, Texas A & M University, College Station, TX, USA, 2000. [Google Scholar]
- Graziani, A.; Ferrotti, G.; Pasquini, E.; Canestrari, F. An application to the European practice of the Bailey method for HMA aggregate grading design. Procedia Soc. Behav. Sci. 2012, 53, 991–1000. [Google Scholar] [CrossRef]
- Golalipour, A.; Jamshidi, E.; Niazi, Y.; Afsharikia, Z.; Khadem, M. Effect of aggregate gradation on rutting of asphalt pavements. Procedia Soc. Behav. Sci. 2012, 53, 440–449. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Xiao, G.; Gong, X. Analysis on impact of gradation and anti-rutting additive on rutting resistance of asphalt mixture. J. Highw. Transp. Res. Dev. 2014, 31, 27–46. [Google Scholar]
- Fang, M.; Park, D.; Singuranayo, J.; Chen, H.; Li, Y. Aggregate gradation theory, design and its impact on asphalt pavement performance: A review. Int. J. Pavement Eng. 2019, 20, 1408–1424. [Google Scholar] [CrossRef]
- Zhao, W. The Effects of Fundamental Mixture Parameters on Hot-Mix Asphalt Performance Properties. Ph.D Thesis, Clemson University, Clemson, SC, USA, 2011. [Google Scholar]
- Sangsefidi, E.; Ziari, H.; Mansourkhaki, A. The effect of aggregate gradation on creep and moisture susceptibility performance of warm mix asphalt. J. Pavement Eng. 2014, 2, 133–141. [Google Scholar] [CrossRef]
- Hafeez, I.; Kamal, M.; Mirza, M. An experimental study to select aggregate gradation for stone mastic asphalt. J. Chin. Inst. Eng. 2015, 1, 1–8. [Google Scholar] [CrossRef]
- Xiao, F.; David, A.; Amirkhanian, S.; He, L. Aggregate gradations on moisture and rutting resistances of open graded friction course mixtures. Constr. Build. Mater. 2015, 85, 127–135. [Google Scholar] [CrossRef]
- Kim, Y.; Park, H.; Aragão, F.; Lutif, J. Effects of aggregate structure on hot-mix asphalt rutting performance in low traffic volume local pavements. Constr. Build. Mater. 2009, 23, 2177–2282. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Li, P.; Cheng, L.; Wang, X.; Zhang, W. Analysis of skeleton contact stability of graded aggregates system and its effect on slip creep properties of asphalt mixture. Constr. Build. Mater. 2022, 316, 125911. [Google Scholar] [CrossRef]
- Devulapalli, L.; Sarang, G.; Kothandaraman, S. Characteristics of aggregate gradation, drain down and stabilizing agents in stone matrix asphalt mixtures: A state of art review. J. Traffic Transp. Eng. 2022, 9, 167–179. [Google Scholar] [CrossRef]
- Liu, S.; Cao, W.; Qi, X.; Ren, S. Research and application of statistical law of VCA formed from the packing of basalt coarse aggregates. Constr. Build. Mater. 2014, 71, 484–491. [Google Scholar] [CrossRef]
- Liu, S.; Cao, W.; Li, Y.; Xue, Z. Building and application of VMAa physical model of mineral aggregate without adding asphalt. China J. Highw. Transp. 2016, 8, 1–10. [Google Scholar]
- JTG F40-2004; Technical Specifications for Construction of Highway Asphalt Pavements. Ministry of Transport: Beijing, China, 2004.
- Liu, S.; Shang, Q.; Guo, Z. Estimation of optimum asphalt content range of hot mix asphalt in objective mix design. J. Highw. Transp. Res. Dev. 2006, 2, 39–42. [Google Scholar]
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. Ministry of Transport: Beijing, China, 2011.
- Austroads Ltd. Development of Aspects of a Design Procedure for Stone Mastic Asphalt; No. AP-T221-13; Austroads Publication: Sydney, Australia, 2013. [Google Scholar]
Properties | Test Values | Specification | ||
---|---|---|---|---|
10–15 mm | 5–10 mm | 3–5 mm | ||
Apparent specific gravity | 2.835 | 2.848 | 2.823 | ≥2.60 |
Bulk specific gravity | 2.770 | 2.679 | 2.703 | -- |
Water absorption (%) | 1.0 | 1.5 | 1.2 | ≤2.0 |
Percent of flat and elongated particles (%) | 8.3 | 9.5 | 9.8 | ≤15 |
Crushed stone value (%) | 12.6 | 12.6 | -- | ≤26 |
L.A. abrasion (%) | 9.3 | 9.6 | 9.0 | ≤28 |
Properties | Test Values | Specification | |||
---|---|---|---|---|---|
20–30 mm | 10–20 mm | 5–10 mm | 3–5 mm | ||
Apparent specific gravity | 2.737 | 2.727 | 2.747 | 2.673 | ≥2.50 |
Bulk specific gravity | 2.700 | 2.687 | 2.694 | 2.612 | -- |
Water absorption (%) | 0.5 | 0.5 | 0.7 | 0.9 | ≤3.0 |
Percent of flat and elongated particles (%) | 10.3 | 11.5 | 9.8 | 11.0 | ≤15 |
Crushed stone value (%) | 18.5 | 18.5 | 18.5 | -- | ≤28 |
L.A. abrasion (%) | 17.3 | 17.6 | 17.2 | -- | ≤30 |
Properties | Test Values | Specification | |
---|---|---|---|
Basalt | Limestone | ||
Apparent specific gravity | 2.821 | 2.723 | ≥2.50 |
Angularity (s) | 38 | 36 | ≥30 |
Index | Softening Point (°C) | Penetration (25 °C, 0.1 mm) | Specific Gravity (15 °C) | Ductility (cm) | |
---|---|---|---|---|---|
15 °C | 10 °C | ||||
Test values | 49.6 | 71 | 1.021 | >100 | 40 |
AC Mixes | Proportions of Different Coarse Aggregates | VCA (%) | ||||
---|---|---|---|---|---|---|
20–30 mm | 10–20 mm | 10–15 mm | 5–10 mm | 3–5 mm | ||
AC-13 | -- | -- | 29 | 51 | 20 | 36.01 |
AC-20 | -- | 65 | -- | 20 | 15 | 35.65 |
AC-25 | 25 | 45 | -- | 15 | 15 | 34.12 |
Source of Variation | Degree of Freedom | Sum of Squares | Mean Square | F- Statistics | F- Critical | p- Value |
---|---|---|---|---|---|---|
AC-13 | ||||||
Gradation | 4 | 4,885,150 | 1,221,288 | 69.83495 | 3.47805 | 2.87 × 10−7 |
Error | 10 | 174,882 | 17,488.2 | |||
Total | 14 | 5,060,032 | ||||
AC-20 | ||||||
Gradation | 4 | 1,656,796 | 414,198.9 | 64.31926 | 3.47805 | 4.26 × 10−7 |
Error | 10 | 64,397.33 | 6439.733 | |||
Total | 14 | 1,721,193 | ||||
AC-25 | ||||||
Gradation | 4 | 10,371,596 | 2,592,899 | 107.8359 | 3.47805 | 3.52 × 10−8 |
Error | 10 | 240,448.7 | 24,044.87 | |||
Total | 14 | 10,612,044 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Cao, W.; Ren, X.; Lou, S.; Liu, S.; Zhang, J. Impacts of Aggregate Gradation on the Volumetric Parameters and Rutting Performance of Asphalt Concrete Mixtures. Materials 2022, 15, 4866. https://doi.org/10.3390/ma15144866
Li W, Cao W, Ren X, Lou S, Liu S, Zhang J. Impacts of Aggregate Gradation on the Volumetric Parameters and Rutting Performance of Asphalt Concrete Mixtures. Materials. 2022; 15(14):4866. https://doi.org/10.3390/ma15144866
Chicago/Turabian StyleLi, Weihua, Weidong Cao, Xianfu Ren, Shurong Lou, Shutang Liu, and Jizhe Zhang. 2022. "Impacts of Aggregate Gradation on the Volumetric Parameters and Rutting Performance of Asphalt Concrete Mixtures" Materials 15, no. 14: 4866. https://doi.org/10.3390/ma15144866
APA StyleLi, W., Cao, W., Ren, X., Lou, S., Liu, S., & Zhang, J. (2022). Impacts of Aggregate Gradation on the Volumetric Parameters and Rutting Performance of Asphalt Concrete Mixtures. Materials, 15(14), 4866. https://doi.org/10.3390/ma15144866