Study on the Initiation of Interface Crack in Rock Joints
Abstract
:1. Introduction
2. Interface Crack Model
3. Initiation of Interface Crack
3.1. Determination of Crack Initiation Angle
3.2. Crack Initiation Criterion
4. Verification Study
4.1. Verification by Experimental Study
4.2. Verification by the Numerical Study
4.2.1. Calibration of Micro-Parameters
4.2.2. Results of Numerical Study
5. Discussion
5.1. Effect of Cohesion c
5.2. Effect of Internal Friction Angle φ
5.3. Effect of Relative Critical Size α
5.4. Comparison with Other Studies
6. Conclusions
- (1)
- A Mode II fracture generally occurs in the interface crack of rock joints, which is different from the fracture mode that often occurs in the rock matrix.
- (2)
- The theoretical results calculated by the proposed fracture criterion are in good agreement with the experimental and numerical results. Hence, the proposed fracture criterion could be verified by the test results.
- (3)
- The effect of T-stress was considered in the fracture criterion. It is shown that the cohesion c and internal friction angle φ increase with the increase in relative critical size α.
- (4)
- The relative critical size α, internal friction angle φ and cohesion c all affect the initiation of the interface crack. With an increase in cohesion c, mode II fracture toughness KIIC clearly increases. When the value of KI is small, the effect of α on the initiation of the interface crack is much greater than that of φ. Then, with an increase in , the φ of the joint plays a more important role on the initiation of the interface crack.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ban, L.; Du, W.; Qi, C. A peak dilation angle model considering the real contact area for rock joints. Rock Mech. Rock Eng. 2020, 53, 4909–4923. [Google Scholar] [CrossRef]
- Li, J.; Ma, G. Analysis of blast wave interaction with a rock joint. Rock Mech. Rock Eng. 2020, 43, 777–787. [Google Scholar] [CrossRef]
- Zhong, Z.B.; Hu, X.Z.; Deng, R.G.; Fu, X.M.; Lv, L. Study on the compression-shear fracture mechanism of infilled jointed rock mass with pre-crack. Chin. J. Rock Mech. Eng. 2018, 37, 207–218. [Google Scholar]
- Gao, W.; Dai, S.; Xiao, T.; He, T.Y. Failure process of rock slopes with cracks based on the fracture mechanics method. Eng. Geol. 2017, 231, 190–199. [Google Scholar] [CrossRef]
- Gao, W.; Xiao, T.; Wang, X.; Wang, C. Theoretical study on extension of crack tip plastic zone by remote simple tensile considering crack interaction. Eur. J. Mech. A/Solids 2019, 77, 103814. [Google Scholar] [CrossRef]
- Ji, W.W.; Pan, P.Z.; Lin, Q.; Feng, X.T.; Du, M.P. Do disk-type specimens generate a mode II fracture without confinement? Int. J. Rock Mech. Min. Sci. 2016, 87, 48–54. [Google Scholar] [CrossRef]
- She, C.X.; Sun, F.T. Study of the peak shear strength of a cement-filled hard rock joint. Rock Mech. Rock Eng. 2018, 51, 713–728. [Google Scholar] [CrossRef]
- Tang, Z.C.; Wong, L.N.Y. New Criterion for Evaluating the Peak Shear Strength of Rock Joints Under Different Contact States. Rock Mech. Rock Eng. 2016, 49, 1191–1199. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Yang, J.; Zhou, D.; Chen, Y.F. Experimental investigation on the wetting-induced weakening of sandstone joints. Eng. Geol. 2017, 225, 61–67. [Google Scholar] [CrossRef]
- Guo, S.; Qi, S. Numerical study on progressive failure of hard rock samples with an unfilled undulate joint. Eng. Geol. 2015, 193, 173–182. [Google Scholar] [CrossRef]
- Tian, H.M.; Chen, W.Z.; Yang, D.S.; Yang, J.P. Experimental and numerical analysis of the shear behaviour of cemented concrete–rock joints. Rock Mech. Rock Eng. 2014, 48, 213–222. [Google Scholar] [CrossRef]
- Park, J.W.; Song, J.J. Numerical simulation of a direct shear test on a rock joint using a bonded-particle model. Int. J. Rock Mech. Min. Sci. 2009, 46, 1315–1328. [Google Scholar] [CrossRef]
- Asadi, M.S.; Rasouli, V.; Barla, G. A bonded particle model simulation of shear strength and asperity degradation for rough rock fractures. Rock Mech. Rock Eng. 2012, 45, 649–675. [Google Scholar] [CrossRef]
- Le, B.; Koval, G.; Chazallon, C. Discrete element model for crack propagation in brittle materials. Int. J. Numer. Anal. Met. 2016, 40, 583–595. [Google Scholar] [CrossRef]
- Ficker, T. Fractal properties of joint roughness coefficients. Int. J. Rock Mech. Min. Sci. 2017, 94, 27–31. [Google Scholar] [CrossRef]
- Ge, Y.F.; Kulatilake, P.H.S.W.; Tang, H.M.; Xiong, C.R. Investigation of natural rock joint roughness. Comput. Geotech. 2014, 55, 290–305. [Google Scholar] [CrossRef]
- Liu, X.G.; Zhu, W.C.; Yu, Q.L.; Chen, S.J.; Li, R.F. Estimation of the joint roughness coefficient of rock joints by consideration of two-order asperity and its application in double-joint shear tests. Eng. Geol. 2017, 220, 243–255. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.S.; Tian, Y.C.; Liu, D.F.; Jiang, Y.L. Updates to JRC-JCS model for estimating the peak shear strength of rock joints based on quantified surface description. Eng. Geol. 2017, 228, 282–300. [Google Scholar] [CrossRef]
- Zhang, X.B.; Jiang, Q.H.; Chen, N.; Wei, W.; Feng, X.X. Laboratory investigation on shear behavior of rock joints and a new peak shear strength criterion. Rock Mech. Rock Eng. 2016, 49, 3495–3512. [Google Scholar] [CrossRef]
- Grasselli, G.; Egger, P. Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters. Int. J. Rock Mech. Min. Sci. 2003, 40, 25–40. [Google Scholar] [CrossRef]
- Erdogan, F.; Sih, G.C. On the Crack Extension in Plates Under Plane Loading and Transverse Shear. J. Basic Eng. 1963, 85, 519–525. [Google Scholar] [CrossRef]
- Sih, G.C. Energy-density concept in fracture mechanics. Eng. Fract. Mech. 1973, 5, 1037–1040. [Google Scholar] [CrossRef]
- Nuismer, R.J. An energy release rate criterion for mixed mode fracture. Int. J. Fract. 1975, 11, 245–250. [Google Scholar] [CrossRef]
- Li, C.B.; Yang, D.C.; Xie, H.P.; Ren, L.; Wang, J. Research on the anisotropic fracture behavior and the corresponding fracture surface roughness of shale. Eng. Fract. Mech. 2021, 255, 107963. [Google Scholar] [CrossRef]
- Liu, J.Y.; Bao, W.J.; Zhao, J.Y.; Zhou, C.Y. Fatigue crack growth behavior of CP-TI cruciform specimens with mixed mode I-II crack under biaxial loading. Materials 2022, 15, 1926. [Google Scholar] [CrossRef] [PubMed]
- Le, C.J.; Ren, X.H.; Wang, H.J.; Yu, S.Y. Experimental and numerical study on the failure characteristics of brittle solids with a circular hole and internal cracks. Materials 2022, 15, 1406. [Google Scholar] [CrossRef]
- Fan, Y.; Zhu, Z.M.; Zhao, Y.L.; Zhou, L.; Qiu, H.; Niu, C.Y. Analytical solution of T-stresses for an inclined crack in compression. Int. J. Rock Mech. Min. 2021, 138, 104433. [Google Scholar] [CrossRef]
- Banks-Sills, L. Interface fracture mechanics: Theory and experiment. Int. J. Fract. 2015, 191, 131–146. [Google Scholar] [CrossRef]
- Yi, D.K.; Xiao, Z.M.; Tan, S.K. On the plastic zone size and the crack tip opening displacement of an interface crack between two dissimilar materials. Int. J. Fract. 2012, 176, 97–104. [Google Scholar] [CrossRef]
- Deng, X. General crack-tip fields for stationary and steadily growing interface cracks in anisotropic bimaterials. J. Appl. Mech.-ASME 1993, 60, 183–189. [Google Scholar] [CrossRef]
- Zhou, S.X.; Li, X.F. Smooth interface crack between two bonded dissimilar orthotropic elastic media under shear loading. Eur. J. Mech. A/Solids 2020, 81, 103935. [Google Scholar] [CrossRef]
- Banks-Sills, L. Interface fracture: Failure criteria. J. Appl. Mech.-ASME 2020, 87, 051007. [Google Scholar] [CrossRef]
- Mega, M.; Dolev, O.; Banks-Sills, L. Two- and three-dimensional failure criteria for laminate composites. J. Appl. Mech.-ASME 2020, 87, 021001. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Liu, Y.; Qiao, P.Z. Peridynamic modeling of elastic bimaterial interface fracture. Comput. Methods Appl. Mech. Eng. 2022, 390, 114458. [Google Scholar] [CrossRef]
- Ghamgosar, M.; Erarslan, N. Experimental and numerical studies on development of fracture process zone (FPZ) in rocks under cyclic and static loadings. Rock Mech. Rock Eng. 2016, 49, 893–908. [Google Scholar] [CrossRef]
- Lee, H.P.; Olson, J.E.; Schultz, R.A. Interaction analysis of propagating opening mode fractures with veins using the Discrete Element Method. Int. J. Rock Mech. Min. 2018, 103, 275–288. [Google Scholar] [CrossRef]
- Park, C.H.; Bobet, A. Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression. Eng. Fract. Mech. 2010, 77, 2727–2748. [Google Scholar] [CrossRef]
- Gross, D.; Seelig, T. Fracture Mechanics; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Lee, S.; Ravichandran, G. Crack initiation in brittle solids under multiaxial compression. Eng. Fract. Mech. 2003, 70, 1645–1658. [Google Scholar] [CrossRef]
- Li, Y.; Tang, C.; Li, D.; Wu, C. A new shear strength criterion of three-dimensional rock joints. Rock Mech. Rock Eng. 2019, 53, 1477–1483. [Google Scholar] [CrossRef]
- Rao, Q.H.; Sun, Z.Q.; Stephansson, O.; Li, C.L.; Stillborg, B. Shear fracture (Mode II) of brittle rock. Int. J. Rock Mech. Min. Sci. 2003, 40, 355–375. [Google Scholar] [CrossRef]
- Ju, M.H.; Li, J.C.; Li, J.; Zhao, J. Loading rate effects on anisotropy and crack propagation of weak bedding plane-rich rocks. Eng. Fract. Mech. 2020, 230, 106983. [Google Scholar] [CrossRef]
- Tang, S.B.; Bao, C.Y.; Liu, H.Y. Brittle fracture of rock under combined tensile and compressive loading conditions. Can. Geotech. J. 2016, 54, 88–101. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.Z.; Lin, X.Y.; Wang, Z.X. A rigorous derivation for T-stress in line crack problem. Eng. Fract. Mech. 2010, 77, 753–757. [Google Scholar] [CrossRef]
- Liu, H.Y. Wing-crack initiation angle: A new maximum tangential stress criterion by considering T-stress. Eng. Fract. Mech. 2018, 199, 380–391. [Google Scholar] [CrossRef]
- Moazzami, M.; Ayatollahi, M.R.; Akhavan-Safar, A. Assessment of the fracture process zone in rocks using digital image correlation technique: The role of mode-mixity, size, geometry and material. Int. J. Damage Mech. 2019, 29, 646–666. [Google Scholar] [CrossRef]
- Ayatollahi, M.R.; Aliha, M.R.M. On the use of Brazilian disc specimen for calculating mixed mode I–II fracture toughness of rock materials. Eng. Fract. Mech. 2008, 75, 4631–4641. [Google Scholar] [CrossRef]
- Lin, Q.; Biolzi, L.; Labuz, J.F. Opening and mixed-mode fracture initiation in a quasi-brittle material. J. Eng. Mech. 2013, 139, 177–187. [Google Scholar] [CrossRef]
- Tan, Q.; Xu, Q.J. The Shear Strength and Mode II Fracture Toughness of Layered Concrete. Eng. Mech. 2019, 36, 197–205. (In Chinese) [Google Scholar]
- Zhang, Z.G.; Qiao, C.S.; Li, X. Experimental study on the strength of single joint rock mass. China Railw. Sci. 2007, 28, 34–39. (In Chinese) [Google Scholar]
- Ivars, D.M.; Pierce, M.E.; Darcel, C.; Reyes-Montes, J.; Potyondy, D.O.; Yong, R.P.; Cundall, P.A. The synthetic rock mass approach for jointed rock mass modelling. Int. J. Rock Mech. Min. Sci. 2011, 48, 219–244. [Google Scholar] [CrossRef]
- Dai, S.; Gao, W.; Wang, C.; Xiao, T. Damage evolution of heterogeneous rocks under uniaxial compression based on distinct element method. Rock Mech. Rock Eng. 2019, 52, 2631–2647. [Google Scholar] [CrossRef]
- Brady, B.H.G.; Brown, E.T. Rock Mechanics; Springer: Cham, The Netherlands, 2006. [Google Scholar]
Micro-Parameters | Symbol | Units | Value |
---|---|---|---|
Minimum particle radius | Rmin | mm | 0.17 |
Ratio of maximum to minimum ball radius | λ | / | 1.76 |
Ratio of normal to shear stiffness of the particle | kn/ks | / | 1.6 |
Ratio of normal to shear stiffness of the parallel bond | kn/ks | / | 1.6 |
Young’s modulus of the particle | Ec | GPa | 7.3 |
Young’s modulus of the parallel bond | Ec | GPa | 7.3 |
Particle friction coefficient | μ | / | 0.611 |
Particle density | ρ | kg/m3 | 2400 |
Parallel-bond tensile strength | σb | MPa | 30.0 |
Parallel-bond cohesion | cb | MPa | 50.0 |
Smooth-joint particle friction coefficient | μsj | / | 0.36 |
Smooth-joint tensile strength | σsj | MPa | 6.0 |
Smooth-joint cohesion | csj | MPa | 7.7 |
Dip Angle | 35.8° | 45° | 54.2° | 63.4° |
---|---|---|---|---|
KI (MPa‧m0.5) | −4.55 | −1.77 | −0.83 | −0.50 |
KII (MPa‧m0.5) | 3.28 | 1.77 | 1.16 | 1.01 |
Fracture (Initiation) Criterion | The MTS Criterion [21] | The MTS Criterion Considering T-Stress [45] | The Proposed Criterion |
---|---|---|---|
Application scope | Cracks in rock matix | Cracks in rock matrix | Cracks in rock joint |
Fracture mode | Mode I fracture | Mode I fracture | Mode II fracture |
Initiation condition | |||
Key parameters | KI, KII | KI, KII, α, rc, E 1, ν 2, β, f 3, kn 4, ks 5 | KI, KII, φ, c, α, rc |
Initiation angle | 70.5° | Variable | 0° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Gao, W.; Ge, S.; Zhou, C. Study on the Initiation of Interface Crack in Rock Joints. Materials 2022, 15, 4881. https://doi.org/10.3390/ma15144881
Chen X, Gao W, Ge S, Zhou C. Study on the Initiation of Interface Crack in Rock Joints. Materials. 2022; 15(14):4881. https://doi.org/10.3390/ma15144881
Chicago/Turabian StyleChen, Xin, Wei Gao, Shuangshuang Ge, and Cong Zhou. 2022. "Study on the Initiation of Interface Crack in Rock Joints" Materials 15, no. 14: 4881. https://doi.org/10.3390/ma15144881
APA StyleChen, X., Gao, W., Ge, S., & Zhou, C. (2022). Study on the Initiation of Interface Crack in Rock Joints. Materials, 15(14), 4881. https://doi.org/10.3390/ma15144881