The Influence of the Type of Cement on the Properties of Surface Cement Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Assessment of Concrete Mix Properties
3.2. Determination of the Compressive Strength of Concrete
3.3. Flexural Strength of Concrete
3.4. Determination of Concrete Tensile Splitting Strength of the Test Specimens
3.5. Determination of Frost Resistance after 150 Cycles
3.6. Air Void Analysis
4. Discussion
5. Conclusions
- For both cements, the specification requirements were met, both in terms of strength tests and durability tests.
- The use of CEM III multi-component cement in concrete allowed to achieve 71 MPa of compressive strength after 90 days of maturation, i.e., 9% more than for CEM I.
- The use of CEM III cement improved frost resistance, as the decrease in compressive strength was 4.1%, and 10.5% for concrete with CEM I.
- Concrete with CEM III multi-component cement achieved a better pore structure in the form of A300—3.15% and L—0.07.
- Multi-component cement increases the filling of the cement paste structure, and thus increases the durability of cement concrete by reducing the loss of strength by up to 60%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Glinicki, M.A. Inżynieria Betonowych Nawierzchni Drogowych; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2019. [Google Scholar]
- Glinicki, M.A. Właściwości betonu nawierzchniowego z kruszywem odkrytym—Wpływ rodzaju cementu i pielęgnacji. Drog. LXXIV 2019, 4, 99–104. [Google Scholar]
- Hu, M.S.; Siddiqui, D.W.; Fowler, D. Whitney, Two-Lift Concrete Paving—Case Studies and Reviews from Sustainability, Cost Effectiveness and Construction Perspectives. In Proceedings of the TRB 2014 Annual Meeting, Washington, DC, USA, 12–16 January 2014; p. 15. [Google Scholar]
- Pranav, S.; Aggarwal, S.; Yang, E.H.; Sarkar, A.K.; Singh, A.P.; Lahoti, M. Alternative materials for wearing course of concrete pavements: A critical review. Constr. Build. Mater. 2020, 236, 11760. [Google Scholar] [CrossRef]
- Rudnicki, T. The method of aggregate skeleton in self compacting concrete designing with segment regression. Cem. Wapno Beton 2016, 1, 10–19. [Google Scholar] [CrossRef]
- Mackiewicz, P.; Szydło, A.; Krawczyk, B. Influence of the construction technology on the texture and roughness of concrete pavements. Roads Bridges Drog. Mosty 2018, 17, 111–126. [Google Scholar] [CrossRef]
- Jurczak, R.; Szmatuła, F.; Rudnicki, T.; Korentz, J. Effect of Ground Waste Glass Addition on the Strength and Durability of Low Strength Concrete Mixes. Materials 2021, 14, 190. [Google Scholar] [CrossRef]
- Glinicki, M.A.; Dąbrowski, M.; Skrzypczyński, M. Influence of curing on the properties of air-entrained concrete in the upper layer of exposed aggregate pavement-modelling study. Cem. Wapno Beton 2017, 4, 271–281. [Google Scholar]
- Małek, M.; Jackowski, M.; Łasica, W.; Kadela, M. Influence of Polypropylene, Glass and Steel Fiber on the Thermal Properties of Concrete. Materials 2021, 14, 1888. [Google Scholar] [CrossRef]
- Institute of Building Technique, Department of Heat Physics, Sanitary Installations and Environment Pracownia Ochrony Środowiska: Performing a life cycle analysis (LCA) to determine the carbon footprint for medium cements from the CEM I, CEM II and CEM III groups produced in Poland, in accordance with PN-EN 15804: 2012 work number: 01929/12/ZOONF.
- Kaszuba, S. Kształtowanie Składu Trwałego Betonu z Udziałem Cementów Wieloskładnikowych (CEM II, CEM III) do Zastosowania w Budownictwie Drogowo-Mostowym; Praca doktorska, Politechnika Œl¹ska: Gliwice, Poland, 2019. [Google Scholar]
- Dam, V.; Taylor, P.; Fick, G.; Gress, D.; van Geem, M.; Lorenz, E. Sustainable Concrete Pavements: A Manual of Practice; National Concrete Pavement Technology Center, Iowa State University: Ames, IA, USA, 2011. [Google Scholar]
- Giergiczny, Z.; Glinicki, M.A.; Sokołowski, M.; Zieliński, M. Air void system and frost salt scaling of concrete containing slag blended cement. Constr. Build. Mater. 2009, 23, 2451–2456. [Google Scholar] [CrossRef]
- Shubbar, A.A.; Jafer, H.; Dulaimi, A.; Hashim, K.; Atherton, W.; Sadique, M. The development of a low carbon binder produced from the ternary blending of cement, ground granulated blast furnace slag and high calcium fly ash: An experimental and statistical approach. Constr. Build. Mater. 2018, 187, 1051–1060. [Google Scholar] [CrossRef]
- Yildirim, H.; Ilica, T.; Sengul, O. Effect of cement type on the resistance of concrete against chloride penetration. Constr. Build. Mater. 2011, 25, 1282–1288. [Google Scholar] [CrossRef]
- Rahhal, V.; Bonavetti, V.; Trusilewicz, L.; Pedrajas, C.; Talero, L. Role of the filler on Portland cement hydration at early ages. Constr. Build. Mater. 2012, 27, 82–90. [Google Scholar] [CrossRef]
- Ghrici, M.; Kenai, S.; Said-Mansour, M. Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements. Cem. Concr. Compos. 2007, 29, 29542–29549. [Google Scholar] [CrossRef]
- TL Beton-StB. Technische Lieferbedingungen für Baustoffe und Baustoffgemische für Tragschichten mit hydraulischen Bindemitteln und Fahrbahndeckenaus Beton; FGSV: Koln, Germany, 2007. [Google Scholar]
- Breitenbücher, R.; Costner, C. Waschbetonoberflächen, Mindestluftporengehalt in Waschbeton. Forschung Straßenbau und Straßenverkhertechnik; Heft 1084: Bonn, Germany, 2013. [Google Scholar]
- Rudy, A.; Olek, J.; Nantung, T.; Newell, R.M. Statistical Optimization of Low Slump Ternary Concrete Mixtures with Ground Granulated Blast Furnace Slag (GGBS) and High Calcium Fly Ash for Pavement Applications, Brittle Matrix Composites-9; Brandt, A.M., Olek, J., Marshall, I.H., Eds.; Woodhead Publ. & IFTR PAS: Warsaw, Poland, 2009; pp. 149–159. [Google Scholar]
- Babu, K.G.; Kumar, V.S.R. Efficiency of GGBS in concrete. Cem. Concr. Res. 2000, 30, 1031–1036. [Google Scholar] [CrossRef]
- Rudnicki, T. Functional Method of Designing Self-Compacting Concrete. Materials 2021, 14, 267. [Google Scholar] [CrossRef]
- Małek, M.; Łasica, Ł.; Kadela, M.; Kluczyński, J.; Dudek, D. Physical and Mechanical Properties of Polypropylene Fibre-Reinforced Cement–Glass Composite. Materials 2021, 14, 637. [Google Scholar] [CrossRef]
- Horszczaruk, E.; Brzozowski, P.; Adamczewski, G.; Rudnicki, T. Influence of Hydrostatic Pressure on Compressive Strength of Self-Consolidating Concrete. J. Civ. Eng. Archit. 2014, 12, 1549–1555. [Google Scholar]
- Rudnicki, T.; Jurczak, R. The impact of the addition of diabase dusts on the properties of cement pavement concrete. Arch. Civ. Eng. 2022, 68, 395. [Google Scholar] [CrossRef]
- Małek, M.; Kadela, M.; Terpiłowski, M.; Szewczyk, T.; Łasica, W.; Muzolf, P. Effect of metal lathe waste addition on the mechanical and thermal properties of concrete. Materials 2021, 14, 2760. [Google Scholar] [CrossRef]
- Łaźniewska-Piekarczyk, B.; Gołaszewski, J. Relationship Between Air-Content in Fresh Cement Paste, Mortar, Mix and Hardened Concrete Acc. to PN-EN 480-1 with Air-Entraining CEM II/BV. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 032044. [Google Scholar] [CrossRef]
- Tunstall, L.E.; Ley, M.T.; Scherer, G.W. Air entraining admixtures: Mechanisms, evaluations, and interactions. Cem. Concr. Res. 2021, 150, 106557. [Google Scholar] [CrossRef]
- Dziedzic, K.; Dąbrowski, M.; Antolik, A.; Glinicki, M.A. Characteristics of concrete mix air-entrainment applying the sequential pressure method. Roads Bridges Drog. I Mosty 2020, 19, 107–118. [Google Scholar] [CrossRef]
- Wong, H.S.; Pappas, A.M.; Zimmerman, R.W.; Buenfeld, N.R. Effect of entrained air voids on the microstructure and mass transport properties of concrete. Cem. Concr. Res. 2011, 41, 1067–1077. [Google Scholar] [CrossRef] [Green Version]
- Rudnicki, T.; Jurczak, R. Recycling of a Concrete Pavement after over 80 Years in Service. Materials 2020, 13, 2262. [Google Scholar] [CrossRef]
- Szydło, A.; Mackiewicz, P.; Wardęga, R.; Krawczyk, B. Katalog typowych konstrukcji nawierzchni sztywnych. Załącznik do zarządzenia Nr 30 Generalnego Dyrektora Dróg Krajowych i Autostrad. Warszawa 2014, 6, 16. [Google Scholar]
- Glinicki, M.A.; Jaskulski, R.; Dąbrowski, M. Design principles and testing of internal frost resistance of concrete for road structures-critical review. Roads Bridges Drog. I Mosty 2016, 15, 21–43. [Google Scholar] [CrossRef]
- Liu, Z. Frost Deterioration in Concrete Due to Deicing Salt Exposure: Mechanism, Mitigation and Conceptual Surface Scaling Model. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2014. [Google Scholar]
- GDDKiA. Warunki Wykonania i Odbioru Robot Budowlanych D-05.03.04 v2 Nawierzchnia z Betonu Cementowego; GDDKiA: Warszawa, Poland, 2019. [Google Scholar]
- Catalogue of Typical Structures of Rigid Pavements. GDDKiA, Warszawa, GDDKiA. 2014. Available online: https://www.gddkia.gov.pl/frontend/web/userfiles/articles/d/dokumenty-techniczne_8162/Dokumenty%20techniczne/KTKNS.pdf (accessed on 30 September 2020).
- Jasiczak, J.; Wdowska, A.; Rudnicki, T. Ultra-High Performance Concretes. Properties, Technology, Applications; Association of Cement Producers (Stowarzyszenie Producentów Cementu): Kraków, Poland, 2008. (In Polish) [Google Scholar]
- Gołaszewski, J. Domieszki do betonu. Efekt działania, ocena i badania efektywności, stosowanie; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2016. [Google Scholar]
- Rudnicki, T. Natural and synthetic admixtures plasticize the tail and mechanisms of their interaction in the concrete mix. Mag. Autostrady 2004, 4, 22–25. [Google Scholar] [CrossRef]
- Pasławski, J.; Rudnicki, T. Agile/Flexible and Lean Management in Ready-Mix concrete delivery. Arch. Civ. Eng. 2021, 67, 689–709. [Google Scholar] [CrossRef]
- Breitenbücher, R.; Bou-Young, Y. Qualitätssicherung von Waschbetonoberflächen, Berichte der Bundesanstalt für Straßenwesen. Straßenbau Heft S 2010, 66, 1–41. [Google Scholar]
- Giergiczny, Z.; Baran, T.; Dziuk, D.; Ostrowsk, M. The increase of concrete frost resistance by using cement with air-entraining agent. Cem. Wapno Beton 2016, 2, 96–105. [Google Scholar]
- Glinicki, M.A. Methods of qualitative and quantitative assessment of concrete air entrainment. Cem. Wapno Beton 2014, 6, 359–369. [Google Scholar]
- Dziedzic, K.; Dąbrowski, M.; Antolik, A.; Glinicki, A. Charakterystyka napowietrzenia mieszanki betonowej metodą sekwencyjno-ciśnieniową. Roads Bridges Drog. I Mosty 2020, 19, 107–118. [Google Scholar]
- Rudnicki, T.; Wołoszka, P. The use of technology whitetopping in the aspect of implementation of repairs of flexible pavements. Bull. Mil. Univ. Technol. 2016, 65, 111–135. [Google Scholar] [CrossRef]
- PN-EN 197-1:2012; Cement—Część 1: Skład, Wymagania i Kryteria Zgodności Dotyczące Cementów Powszechnego Użytku. Polski komitet normalizacyjny: Warszawa, Poland.
- PN-EN 934-1; Domieszki do Betonu, Zaprawy i Zaczynu—Część 1: Wymagania Podstawowe. Polski komitet normalizacyjny: Warszawa, Poland.
- PN-EN 934-2; Domieszki do Betonu, Zaprawy i Zaczynu—Część 2: Domieszki do Betonu. Definicje, Wymagania, Zgodność, Znakowanie i Etykietowanie. Polski komitet normalizacyjny: Warszawa, Poland.
- PN-EN 1008; Woda Zarobowa do Betonu. Polski komitet normalizacyjny: Warszawa, Poland.
- EN 12350-2:2019; Testing Fresh Concrete—Part 2: VeBe consistency testing. Comite Europeen de Normalisation: Brussels, Belgium, 2019.
- EN 12350-7:2019; Testing Fresh Concrete. Air content. Pressure Methods. Comite Europeen de Normalization: Brussels: Belgium, 2019.
- EN 12350-6:2019; Testing Fresh Concrete. Density. Comite Europeen de Normalisation: Brussels, Belgium, 2019.
- EN 12390-2:2019; Testing Hardened Concrete—Part 2: Making and Curing Specimens for Strength Tests. Comite Europeen de Normalisation: Brussels, Belgium, 2019.
- EN 12390-3:2019; Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens. Comite Europeen de Normalisation: Brussels, Belgium, 2019.
- EN 12390-6:2019; Testing Hardened Concrete—Part 6: Bending Strength of Test Specimens. Comite Europeen de Normalisation: Brussels, Belgium, 2019.
- EN 12390-5:2019; Testing Hardened Concrete—Part 5: Tensile Strength when Splitting Test Specimens. Comite Europeen de Normalisation: Brussels, Belgium, 2019.
- PN-B-06250:1988; Polish Standard Normal Concrete (in Polish). PKN: Warsaw, Poland, 1988.
- EN 480-11:2008; Admixtures for Concrete, Mortar and Grout-Test Methods—Part 11: Determination of Air Void Characteristics in Hardened Concrete. Comite Europeen de Normalisation: Brussels, Belgium, 2008.
Property | Unit | Type of Cement | |
---|---|---|---|
CEM I 42.5 R-NA | CEM III/A 42.5 HSR-NA | ||
Water Lust | % | 25.8 | 29.8 |
Seting time initial | min | 205 | 238 |
Seting time final | min | 274 | 317 |
Consistency in volume | mm | 0.8 | 0.8 |
Specific surface | cm2/g | 3275 | 4466 |
Compressive strength F2 | MPa | 26.8 | 14.2 |
Compressive strength F28 | MPa | 54.7 | 51.5 |
LOI | % | 3.37 | 2.61 |
IR | % | 0.66 | 0.82 |
SiO2 | % | 18.95 | 29.18 |
Al2O3 | % | 4.99 | 6.17 |
Fe2O3 | % | 2.81 | 1.55 |
CaO | % | 62.82 | 50.54 |
MgO | % | 1.37 | 4.04 |
SO3 | % | 3.14 | 2.48 |
Na2O | % | 0.21 | 0.33 |
K2O | % | 0.88 | 0.69 |
eqNa2O | % | 0.59 | 0.78 |
Cl− | % | 0.08 | 0.07 |
Properties of Concrete Pavement | Requirements | Test Method |
---|---|---|
Density, tolerance in reference to the formula | ±3.0% | PN-EN 12390-7 |
Compressive strength class for traffic category KR5—KR7, not lower than: | C35/45 | PN-EN 12390-3 |
Flexural strength of concrete for traffic category KR5—KR7, not lower than: | 5.5 MPa | PN-EN 12390-5 |
Tensile strength of concrete when splitting for traffic category KR5—KR7, not lower than: | 3.5 MPa | PN-EN 12390-6 |
Characteristics of air pores in concrete: | PN-EN 480-11 | |
| ≥1.5% ≤0.200 mm | |
Concrete frost resistance test F150: | PN-B-06250 | |
| 5 % 20% |
Sieve | Screening [%] | |||
---|---|---|---|---|
[mm] | Granite 16/22 | Granite 8/16 | Granite 2/8 | Sand 0/2 |
22.000 | 1.0 | 0.0 | 0.0 | 0.0 |
16.000 | 95.5 | 1.7 | 0.00 | 0.0 |
8.000 | 3.5 | 96.3 | 1.2 | 0.0 |
4.000 | 0.0 | 2.0 | 59.70 | 0.0 |
2.000 | 0.0 | 0.0 | 39.10 | 2.5 |
1.000 | 0.0 | 0.0 | 0.0 | 15.9 |
0.500 | 0.0 | 0.0 | 0.0 | 25.5 |
0.250 | 0.0 | 0.0 | 0.00 | 43.4 |
0.125 | 0.0 | 0.0 | 0.0 | 11.9 |
0.000 | 0.0 | 0.0 | 0.0 | 0.8 |
sum: | 100.0 | 100.0 | 100.0 | 100.0 |
Materials | Concrete Mix Compositions [kg/m3] | |
---|---|---|
C_I | C_III | |
CEM I 42.5 R | 380 | - |
CEM III A 42.5 HSR-NA | - | 380 |
Water | 152 | 152 |
Sand 0/2 | 573 | 573 |
Granite 2/8 | 401 | 401 |
Granite 8/16 | 363 | 363 |
Granite 16/22 | 573 | 573 |
SP PC | 3.04 | 3.04 |
LPA | 0.76 | 0.76 |
Density | 2446.1 | 2446.1 |
Materials | Composition of Concrete Mixtures [kg/m3] | |
---|---|---|
C_I | C_III | |
Consistency after 5 min, s | 14 | 15 |
Consistency after 60 min, s | 10 | 14 |
Air content after 5 min, % | 5.8 | 5.6 |
Air content after 60 min, % | 5.1 | 5.4 |
Density, g/cm3 | 2.440 | 2.442 |
Materials | Compressive Strength [MPa] | |
---|---|---|
C_I | C_III | |
Compressive strength after 7 days | 49.6 | 44.5 |
Compressive strength after 28 days | 57.4 | 60.3 |
Compressive strength after 90 days | 64.5 | 70.2 |
Density, g/cm3 | 2.442 | 2.447 |
Materials | Flexural Strength [MPa] | |
---|---|---|
C_I | C_III | |
Flexural strength after 28 days | 6.8 | 7.0 |
Flexural strength after 90 days | 7.0 | 7.8 |
Materials | Tensile Splitting Strength of the Test Specimens [MPa] | |
---|---|---|
C_I | C_III | |
Concrete tensile splitting strength of the test specimens after 28 days | 4.5 | 4.4 |
Concrete tensile splitting strength of the test specimens after 90 days | 5.4 | 5.2 |
Frost Resistance Test F150 | Type of Mixture | |
---|---|---|
C_I | C_III | |
Mean decrease in the strength of specimens ΔR, % | 10.5 | 4.1 |
Mass change of specimens subjected to cyclical freezing and thawing ΔG, % | 0.03 | 0.02 |
Parameter | Unit | C_I | C_III |
---|---|---|---|
Total air content, A | % | 4.71 | 5.77 |
Spacing factor, L | mm | 0.16 | 0.07 |
Micro air-void content, A300 | % | 2.49 | 3.15 |
Specific surface of the air | mm−1 | 48.6 | 56.8 |
Total traverse length | mm | 2646 | 2646 |
Total number of chords measured | 3214 | 3214 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudnicki, T. The Influence of the Type of Cement on the Properties of Surface Cement Concrete. Materials 2022, 15, 4998. https://doi.org/10.3390/ma15144998
Rudnicki T. The Influence of the Type of Cement on the Properties of Surface Cement Concrete. Materials. 2022; 15(14):4998. https://doi.org/10.3390/ma15144998
Chicago/Turabian StyleRudnicki, Tomasz. 2022. "The Influence of the Type of Cement on the Properties of Surface Cement Concrete" Materials 15, no. 14: 4998. https://doi.org/10.3390/ma15144998
APA StyleRudnicki, T. (2022). The Influence of the Type of Cement on the Properties of Surface Cement Concrete. Materials, 15(14), 4998. https://doi.org/10.3390/ma15144998