Adsorption of Heavy Metals Ions from Mining Metallurgical Tailings Leachate Using a Shell-Based Adsorbent: Characterization, Kinetics and Isotherm Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Batch Adsorption Experiments
3. Results
3.1. Characterization of the Adsorbent
3.2. Characterization of Three Mining and Metallurgical Leachates
3.3. Batch Adsorption Experiments
3.3.1. Effect of pH
3.3.2. Effect of Contact Time and Dosage
3.3.3. Effect of Initial Concentration
3.3.4. Characteristics of WS after Treatment with Heavy Metal Solutions
3.3.5. Effect of Co-Ions in Solution
3.4. Adsorption Isotherms
3.5. Kinetics Adsorption Studies
3.6. Treatment of Mining and Metallurgical Leachates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Förstner, U.; Wittmann, G.T.W. Metal Pollution in the Aquatic Environment; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1979; pp. 14–16. [Google Scholar]
- Azimi, A.; Azari, A.; Rezakazemi, M.; Ansarpour, M. Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Rev. 2017, 4, 37–59. [Google Scholar] [CrossRef]
- Joseph, L.; Jun, B.-M.; Flora, J.R.; Park, C.M.; Yoon, Y. Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere 2019, 229, 142–159. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chu, K.H.; Al-Hamadani, Y.A.; Park, C.M.; Jang, M.; Kim, D.-H.; Yu, M.; Heo, J.; Yoon, Y. Removal of contaminants of emerging concern by membranes in water and wastewater: A review. Chem. Eng. J. 2018, 335, 896–914. [Google Scholar] [CrossRef]
- Ayala, J.; Fernández, B. A Case Study of Landfill Leachate Using Coal Bottom Ash for the Removal of Cd2+, Zn2+ and Ni2+. Metals 2019, 6, 300. [Google Scholar] [CrossRef]
- Ayala, J.; Fernández, B. Treatment of mining waste leachate by the adsorption process using spent coffee grounds. Environ. Technol. 2019, 40, 2037–2051. [Google Scholar] [CrossRef]
- Ayala, J.; Fernandez, B. Treatment from abandoned mine landfill leachates. Adsorption technology. J. Mater. Res. Technol. 2019, 8, 2732–2740. [Google Scholar] [CrossRef]
- Mnasri-Ghnimi, S.; Frini-Srasra, N. Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Appl. Clay Sci. 2019, 179, 105151. [Google Scholar] [CrossRef]
- Shahrokhi-Shahraki, R.; Benally, C.; El-Din, M.G.; Park, J. High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere 2021, 264 Pt 1, 128455. [Google Scholar] [CrossRef]
- Saad, E.M.; Elshaarawy, R.F.; Mahmoud, S.A.; El-Moselhy, K.M. New Ulva lactuca Algae Based Chitosan Bio-composites for Bioremediation of Cd(II) Ions. J. Bioresour. Bioprod. 2021, 6, 223–242. [Google Scholar] [CrossRef]
- Jjagwe, J.; Olupot, P.W.; Menya, E.; Kalibbala, H.M. Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. J. Bioresour. Bioprod. 2021, 6, 292–322. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, S.; Tian, Z.; Duan, G.; Pan, H.; Yue, Y.; Li, S.; Jian, S.; Yang, W.; Liu, K.; et al. MOFs meet wood: Reusable magnetic hydrophilic composites toward efficient water treatment with super-high dye adsorption capacity at high dye concentration. Chem. Eng. J. 2022, 446 Pt 1, 136851. [Google Scholar] [CrossRef]
- Aziz, H.A.; Adlan, M.N.; Ariffin, K.S. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: Post treatment by high quality limestone. Bioresour. Technol. 2008, 99, 1578–1583. [Google Scholar] [CrossRef] [PubMed]
- Sdiri, A.; Higashi, T.; Jamoussi, F.; Bouaziz, S. Effects of impurities on the removal of heavy metals by natural limestones in aqueous systems. J. Environ. Manag. 2012, 93, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Yavuz, Ö.; Guzel, R.; Aydin, F.; Tegin, I.; Ziyadanogullari, R. Removal of Cadmium and Lead from Aqueous Solution by Calcite. Pol. J. Environ. Stud. 2007, 16, 467–471. [Google Scholar]
- Badrealam, S.; Roslan, F.S.; Dollah, Z.; Bakar, A.A.A.; Handan, R. Exploring the eggshell from household waste as alternative adsorbent for heavy metal removal from wastewater. In AIP Conference Proceedings 2020; AIP Publishing LLC: Penang, Malaysia, 2018; p. 020077. [Google Scholar] [CrossRef]
- Dayanidhi, K.; Vadivel, P.; Jothi, S.; Eusuff, N.S. White Eggshells: A Potential Biowaste Material for Synergetic Adsorption and Naked-Eye Colorimetric Detection of Heavy Metal Ions from Aqueous Solution. ACS Appl. Mater. Interfaces 2020, 12, 1746–1756. [Google Scholar] [CrossRef] [PubMed]
- Habte, L.; Shiferaw, N.; Khan, M.D.; Thriveni, T.; Ahn, J.W. Sorption of Cd2+ and Pb2+ on Aragonite Synthesized from Eggshell. Sustainability 2020, 12, 1174. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.-Y.; Wu, H.-M.; Hsieh, S.-L.; Li, J.-S.; Dong, C.; Chen, C.-W.; Hsieh, S. Preparation of vaterite calcium carbonate granules from discarded oyster shells as an adsorbent for heavy metal ions removal. Chemosphere 2020, 254, 126903. [Google Scholar] [CrossRef]
- Xu, X.; Liu, X.; Oh, M.; Park, J. Oyster Shell as a Low-Cost Adsorbent for Removing Heavy Metal Ions from Wastewater. Pol. J. Environ. Stud. 2019, 28, 2949–2959. [Google Scholar] [CrossRef]
- Yen, H.Y.; Li, J.Y. Process optimization for Ni(II) removal from wastewater by calcined oyster shell powders using Taguchi method. J. Environ. Manag. 2015, 161, 344–349. [Google Scholar] [CrossRef]
- Jung, S.; Heo, N.S.; Kim, E.J.; Oh, S.Y.; Lee, H.U.; Kim, I.T.; Hur, J.; Lee, G.-W.; Lee, Y.-C.; Huh, Y.S. Feasibility test of waste oyster shell powder for water treatment. Process Saf. Environ. Prot. 2016, 102, 129–139. [Google Scholar] [CrossRef]
- Londono-Zuluaga, C.; Jameel, H.; Gonzalez, R.W.; Lucia, L. Crustacean shell-based biosorption water remediation platforms: Status and perspectives. J. Environ. Manag. 2019, 231, 757–762. [Google Scholar] [CrossRef]
- Núñez, D.; Serrano, J.A.; Mancisidor, A.; Elgueta, E.; Varaprasad, K.; Oyarzún, P.; Cáceres, R.; Ide, W.; Rivas, B.L. Heavy metal removal from aqueous systems using hydroxyapatite nanocrystals derived from clam shells. RSC Adv. 2019, 9, 22883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozbas, S.K.; Boz, Y. Low-cost biosorbent: Anadara inaequivalvis shells for removal of Pb(II) and Cu(II) from aqueous solution. Process Saf. Environ. Prot. 2016, 103, 144–152. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, J.-E.; Yan, W.; Kang, X.; Cheng, C.; Ouyang, Y. Removal of cadmium from aqueous solution using waste shells of golden apple snail. Desalination Water Treat. 2016, 57, 23987–24003. [Google Scholar] [CrossRef]
- Köhler, S.J.; Cubillas, P.; Rodríguez-Blanco, J.D.; Bauer, C.; Prieto, M. Removal of cadmium from wastewaters by aragonite shells and the influence of other divalent cations removal of cadmium from wastewaters by aragonite shells and the influence of other divalent. Environ. Sci. Technol. 2006, 41, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://apromar.es/ (accessed on 10 November 2021).
- Marin, F.; Luquet, G. Molluscan shell proteins. Comptes Rendus Palevol 2004, 3, 469–492. [Google Scholar] [CrossRef]
- Martínez-García, C.; González-Fonteboa, B.; Martínez-Abella, F.; López, D.C. Performance of mussel shell as aggregate in plain concrete. Constr. Build. Mater. 2017, 139, 570–583. [Google Scholar] [CrossRef]
- Du, Y.; Lian, F.; Zhu, L. Biosorption of divalent Pb, Cd and Zn on aragonite and calcite mollusk shells. Environ. Pollut. 2011, 159, 1763–1768. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, C.; Xu, J.; Li, Y. The use of raw and acid-pretreated bivalve mollusk shells to remove metals from aqueous solutions. J. Hazard. Mater. 2009, 168, 156–162. [Google Scholar] [CrossRef]
- de los Santos, C.R.; Fernández, J.B.; Hernández, G.P.; Rivera, M.Á.; Flores, L.L. Adsorción de cobre (II) y cadmio (II) en suspensiones acuosas de CaCO3 biogénico nanoestructurado. Boletín Soc. Española Cerámica Vidr. 2018, 58, 2–13. [Google Scholar] [CrossRef]
- Du, Y.; Zhu, L.; Shan, G. Removal of Cd2+ from contaminated water by nano-sized aragonite mollusk shell and the competition of coexisting metal ions. J. Colloid Interface Sci. 2012, 367, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, V.C.; Mall, I.D.; Mishra, I.M. Modelling Individual and Competitive Adsorption of Cadmium(II) and Zinc(II) Metal Ions from Aqueous Solution onto Bagasse Fly Ash. Sep. Sci. Technol. 2006, 41, 2685–2710. [Google Scholar] [CrossRef]
- Zhang, R.; Richardson, J.J.; Masters, A.F.; Yun, G.; Liang, K.; Maschmeyer, T. Effective Removal of Toxic Heavy Metal Ions from Aqueous Solution by CaCO3 Microparticles. Water Air Soil Pollut. 2018, 229, 136. [Google Scholar] [CrossRef]
- Sdiri, A.; Higashi, T. Simultaneous removal of heavy metals from aqueous solution by natural limestones. Appl. Water Sci. 2012, 3, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Chen, J.; Clark, M.; Yu, Y. Adsorption of copper to different biogenic oyster shell structures. Appl. Surf. Sci. 2014, 311, 264–272. [Google Scholar] [CrossRef]
- Ahmad, M.; Usman, A.R.; Lee, S.S.; Kim, S.-C.; Joo, J.-H.; Yang, J.E.; Ok, Y.S. Eggshell and coral wastes as low cost sorbents for the removal of Pb2+, Cd2+ and Cu2+ from aqueous solutions. J. Ind. Eng. Chem. 2012, 18, 198–204. [Google Scholar] [CrossRef]
- Hsu, T.-C. Experimental assessment of adsorption of Cu2+ and Ni2+ from aqueous solution by oyster shell powder. J. Hazard. Mater. 2009, 171, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Hassan, E.-S.R.; Rostom, M.; Farghaly, F.E.; Khalek, M.A. Bio-sorption for tannery effluent treatment using eggshell wastes; kinetics, isotherm and thermodynamic study. Egypt. J. Pet. 2020, 29, 273–278. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, H. A Comparison Study on the Arsenate Adsorption Behavior of Calcium-Bearing Materials. Materials 2019, 12, 1936. [Google Scholar] [CrossRef] [Green Version]
- Ayala, J.; Fernández, B. Industrial waste materials as adsorbents for the removal of As and other toxic elements from an abandoned mine spoil heap leachate: A case study in Asturias. J. Hazard. Mater. 2020, 384, 121446. [Google Scholar] [CrossRef]
- Nishimura, T.; Hata, R.; Hasegawa, F. Chemistry of the M (M=Fe, Ca, Ba)-Se-H2O Systems at 25 °C. Molecules 2009, 14, 3567–3588. [Google Scholar] [CrossRef] [PubMed]
- Van, H.T.; Nguyen, L.H.; Nguyen, V.D.; Nguyen, X.H.; Nguyen, T.H.; Nguyen, T.V.; Vigneswaran, S.; Rinklebe, J.; Tran, H.N. Characteristics and mechanisms of cadmium adsorption onto biogenic aragonite shells-derived biosorbent: Batch and column studies. J. Environ. Manag. 2019, 241, 535–548. [Google Scholar] [CrossRef] [PubMed]
- Flores-Cano, J.V.; Leyva-Ramos, R.; Mendoza-Barron, J.; Guerrero-Coronado, R.M.; Aragón-Piña, A.; Labrada-Delgado, G.J. Sorption mechanism of Cd(II) from water solution onto chicken eggshell. Appl. Surf. Sci. 2013, 276, 682–690. [Google Scholar] [CrossRef]
Major Component | Minor Component | ||||||
---|---|---|---|---|---|---|---|
(mg L−1) | (μg L−1) | ||||||
O | P | S | O | P | S | ||
Cu | 27.66 | 0.02 | 8.16 | Mn | 2.91 | 25.82 | 2.98 |
Ni | 8.25 | 20.82 | 13.23 | Se | 43.39 | 66.64 | 44.28 |
Zn | 22.29 | 16.27 | 15.11 | Hg | 0.46 | ||
Cd | 28.2 | 67.61 | 16.69 | Ag | 12.9 | ||
As | 0.11 | 6.71 | 5.72 | Pb | 4.24 | ||
Na | 15.42 | 15.54 | 14.71 | U | 4.4 | ||
Mg | 74.04 | 1.64 | 15.55 | Fe | 4.65 | 2.6 | 3.1 |
K | 6.58 | 22.56 | 2.13 | Sb | 5.87 | 31.16 | 4.55 |
Ca | 117.3 | 42.89 | 86.98 | B | 20.37 | 205.17 | 26.55 |
Al | 407.87 | ||||||
Mo | 5.67 | ||||||
Sr | 362.84 | 190.36 | 361.4 | ||||
Ba | 55.73 | 8.11 | 12.61 |
Metal | Me0 | Zn0 | % Me | % Zn | ∑(mM) | mM Me | mM Zn | ∑ (mM) | Ca (mM) | Difference | pHfinal |
---|---|---|---|---|---|---|---|---|---|---|---|
(mM) | (mM) | Remov. | Remov. | Remov. | Remov. | Remov. | Released | mM | |||
Zn only | 1.53 | 94.4 | 1.44 | 7.89 | |||||||
Cd | 3.56 | 1.53 | 80.4 | 86.3 | 5.09 | 2.86 | 1.32 | 4.18 | 2.19 | 1.99 | 7.10 |
Cu | 6.29 | 1.53 | 94.5 | 0.5 | 7.82 | 5.94 | 0.01 | 5.94 | 3.07 | 2.88 | 6.07 |
Ni | 6.82 | 1.53 | 6.25 | 21.0 | 8.35 | 0.43 | 0.32 | 0.75 | 0.85 | −0.10 | 7.44 |
Zn only | 3.06 | 85.1 | 2.60 | 7.64 | |||||||
Cd | 2.67 | 3.06 | 80.4 | 85.8 | 5.73 | 2.39 | 1.44 | 3.83 | 2.42 | 1.40 | 7.14 |
Cu | 4.72 | 3.06 | 92.3 | 6.0 | 7.78 | 4.35 | 0.18 | 4.54 | 3.05 | 1.49 | 6.72 |
Ni | 5.11 | 3.06 | 9.0 | 39.0 | 8.17 | 0.46 | 1.20 | 1.65 | 2.02 | −0.37 | 7.46 |
Zn only | 4.59 | 69.7 | 3.20 | 7.44 | |||||||
Cd | 1.78 | 4.59 | 89.0 | 51.7 | 6.37 | 1.58 | 2.37 | 3.95 | 2.55 | 1.40 | 7.17 |
Cu | 3.15 | 4.59 | 99.0 | 13.3 | 7.74 | 3.11 | 0.61 | 3.73 | 2.41 | 1.31 | 6.95 |
Ni | 3.41 | 4.59 | 14.25 | 48.3 | 8.00 | 0.48 | 2.22 | 2.70 | 2.71 | −0.01 | 7.47 |
Zn only | 6.12 | 49.9 | 3.05 | 7.08 | |||||||
Cd | 0.89 | 6.12 | 81.5 | 39.8 | 7.01 | 0.72 | 2.43 | 3.15 | 2.66 | 0.49 | 7.14 |
Cu | 1.57 | 6.12 | 99.7 | 20.6 | 7.69 | 1.57 | 1.26 | 2.83 | 2.81 | 0.02 | 7.27 |
Ni | 1.7 | 6.12 | 18.7 | 47.5 | 7.82 | 0.32 | 2.90 | 3.22 | 3.20 | 0.023 | 7.33 |
Zn only | 7.64 | 44.5 | 3.40 | 7.05 |
Metal | Me0 | Cd0 | % Me | % Cd | ∑(mM) | mM Me | mM Cd | ∑ (mM) | Ca (mM) | Difference | pHfinal |
---|---|---|---|---|---|---|---|---|---|---|---|
(mM) | (mM) | Remov. | Remov. | Remov. | Remov. | Remov. | Released | mM | |||
Cd only | 0.89 | 99.5 | 0.88 | 7.90 | |||||||
Cu | 6.29 | 0.89 | 72.8 | 1.0 | 7.18 | 4.58 | 0.01 | 4.59 | 3.00 | 1.59 | 6.08 |
Zn | 6.12 | 0.89 | 39.8 | 81.5 | 7.01 | 2.43 | 0.72 | 3.15 | 2.66 | 0.49 | 7.14 |
Ni | 6.82 | 0.89 | 4.5 | 85.4 | 7.71 | 0.31 | 0.76 | 1.07 | 0.99 | 0.079 | 7.55 |
Cd only | 1.78 | 99.4 | 1.77 | 7.76 | |||||||
Cu | 4.72 | 1.78 | 90.2 | 1.8 | 6.50 | 4.35 | 0.03 | 4.38 | 2.94 | 1.44 | 6.69 |
Zn | 4.59 | 1.78 | 51.7 | 89.0 | 6.37 | 2.37 | 1.58 | 3.95 | 2.55 | 1.40 | 7.17 |
Ni | 5.11 | 1.78 | 7.7 | 76.2 | 6.89 | 0.39 | 1.35 | 1.75 | 2.02 | −0.28 | 7.69 |
Cd only | 2.67 | 89.7 | 2.39 | 7.18 | |||||||
Cu | 3.15 | 2.67 | 95.8 | 6.3 | 5.82 | 3.04 | 0.17 | 3.21 | 2.16 | 1.05 | 6.82 |
Zn | 3.06 | 2.67 | 80.8 | 89.5 | 5.73 | 1.44 | 2.39 | 3.82 | 2.42 | 1.40 | 7.14 |
Ni | 3.41 | 2.67 | 8.3 | 62.5 | 6.08 | 0.28 | 1.67 | 1.95 | 1.65 | 0.30 | 7.21 |
Cd only | 3.56 | 80.6 | 2.87 | 6.89 | |||||||
Cu | 1.57 | 3.56 | 97.6 | 13.3 | 5.13 | 1.53 | 0.46 | 2.00 | 1.62 | 0.37 | 7.36 |
Zn | 1.53 | 3.56 | 86.3 | 80.4 | 5.09 | 1.32 | 2.86 | 4.18 | 2.19 | 2.00 | 7.10 |
Ni | 1.7 | 3.56 | 3.8 | 50.4 | 5.26 | 0.06 | 1.79 | 1.86 | 1.79 | 0.07 | 7.26 |
Cd only | 4.45 | 49.7 | 2.21 | 6.66 |
Metal | Me0 | Cu0 | % Me | % Cu | ∑(mM) | mM Me | mM Cu | ∑ (mM) | Ca (mM) | Difference | pHfinal |
---|---|---|---|---|---|---|---|---|---|---|---|
(mM) | (mM) | Remov. | Remov. | Remov. | Remov. | Remov. | Released | mM | |||
Cu only | 1.57 | 99.9 | 1.57 | 6.55 | |||||||
Cd | 3.56 | 1.57 | 13.0 | 97.6 | 5.13 | 0.46 | 1.53 | 1.20 | 1.62 | 0.37 | 7.36 |
Zn | 6.12 | 1.57 | 20.6 | 99.7 | 7.69 | 1.26 | 1.57 | 2.83 | 2.81 | 0.02 | 7.27 |
Ni | 6.82 | 1.57 | 3.8 | 99.7 | 8.39 | 0.25 | 1.57 | 1.82 | 1.62 | 0.20 | 7.45 |
Cu only | 3.15 | 97.1 | 3.06 | 6.47 | |||||||
Cd | 2.67 | 3.15 | 6.3 | 96.8 | 5.82 | 0.17 | 3.04 | 3.21 | 2.16 | 1.05 | 6.82 |
Zn | 4.59 | 3.15 | 13.3 | 96.0 | 7.74 | 0.61 | 3.11 | 3.72 | 2.41 | 1.31 | 6.95 |
Ni | 5.11 | 3.15 | 4.2 | 97.6 | 8.26 | 0.21 | 3.07 | 3.28 | 2.17 | 1.11 | 6.66 |
Cu only | 4.72 | 92.5 | 4.37 | 6.02 | |||||||
Cd | 1.78 | 4.72 | 1.8 | 92.2 | 6.50 | 0.03 | 4.35 | 4.38 | 2.94 | 1.44 | 6.69 |
Zn | 3.06 | 4.72 | 6 | 92.3 | 7.78 | 0.18 | 4.36 | 4.54 | 3.05 | 1.49 | 6.72 |
Ni | 3.41 | 4.72 | 6.3 | 92.9 | 8.13 | 0.14 | 4.39 | 4.52 | 2.94 | 1.58 | 6.36 |
Cu only | 6.29 | 82.4 | 5.18 | 5.77 | |||||||
Cd | 0.89 | 6.29 | 1.0 | 72.8 | 7.18 | 0.09 | 4.58 | 4.59 | 3.00 | 1.59 | 6.08 |
Zn | 1.53 | 6.29 | 0.5 | 82.1 | 7.82 | 0.01 | 5.16 | 5.17 | 3.06 | 2.11 | 6.07 |
Ni | 1.7 | 6.29 | 4.5 | 80.3 | 7.99 | 0.08 | 5.06 | 5.13 | 3.32 | 1.81 | 6.03 |
Cu only | 7.87 | 70.0 | 5.51 | 5.66 |
Metal | amax (mg g−1) | b (L mg−1) | R2 | ∆G (KJ mol−1) | K | 1/n | R2 |
---|---|---|---|---|---|---|---|
Ni | 54.345 | 0.0213 | 0.9337 | −17,349 | 6.453 | 2.830 | 0.9736 |
Zn | 526.32 | 0.1367 | 0.9984 | −27,350 | 226 | 7.032 | 0.7782 |
Cd | 555.56 | 0.1268 | 0.9951 | −23,301 | 360 | 12.469 | 0.6521 |
Cu | 769.23 | 1.1818 | 0.9966 | −22,165 | 389 | 8.137 | 0.6572 |
Pseudo-Second-Order | |||||
---|---|---|---|---|---|
Adsorbent Concentration (g L−1) | Metal | R2 | K2 | Qe | h |
(g mg−1 h−1) | (mg g−1) | (mg g−1 h−1) | |||
Zn | 1 | 6.176 | 47.62 | 588.23 | |
10 | Cu | 1 | 33.333 | 50 | 3333.33 |
Cd | 1 | 333.333 | 50 | 33,333.33 | |
Ni | 0.9996 | 3.396 | 6.01 | 40.8 | |
Zn | 0.9998 | 3.269 | 117.65 | 769.23 | |
4 | Cu | 1 | 40 | 125 | 10,000 |
Cd | 1 | 400 | 125 | 100,000 | |
Ni | 0.9998 | 1.874 | 14.04 | 52.63 | |
Zn | 0.9993 | 1.864 | 243.9 | 909.09 | |
2 | Cu | 1 | 20 | 250 | 10,000 |
Cd | 0.9727 | 0.61 | 163.93 | 200 | |
Ni | 0.8388 | 0.8388 | 4.93 | 0.04 | |
Zn | 0.9943 | 0.364 | 625 | 454.54 | |
0.4 | Cu | 0.9994 | 0.75 | 833.33 | 1250 |
Cd | 0.9977 | 0.667 | 625 | 833.33 |
O 8 h/0.4 | O 24 h/0.4 | O 24 h/0.2 | P 8 h/0.4 | P 24 h/0.4 | P 24 h/0.2 | S 8 h/0.4 | S 24 h/0.4 | S 24 h/0.2 | |
---|---|---|---|---|---|---|---|---|---|
Ni | 8.09 | 6.64 | 5.47 | 16.56 | 16.81 | 17.32 | 10.79 | 15.25 | 16.57 |
Cu | 43.55 | 56.71 | 45.98 | 95.01 | 97.9 | 95.36 | 97.56 | 98.51 | 96.86 |
Zn | 9.3 | 7.46 | 6.75 | 30.93 | 41.71 | 30.53 | 20.71 | 30.61 | 28.35 |
Cd | 11.39 | 10.78 | 9.08 | 32.06 | 40.23 | 31.59 | 22.2 | 32.38 | 28.53 |
As | 96.14 | 97.82 | 96.28 | 62.8 | 89.49 | 66.86 | 65.61 | 86.13 | 70.69 |
Se | 0.72 | 8.14 | 2.47 | 13.46 | 15.47 | 11.01 | 16.18 | 20.26 | 18.64 |
pHfinal | 6.37 | 6.45 | 6.36 | 6.57 | 6.76 | 6.50 | 6.59 | 7.01 | 6.62 |
Metal Bound (mM) | Amount of Cation Released (mM) | |||||||
---|---|---|---|---|---|---|---|---|
Leachate | Zn2+ | Cd2+ | Ni2+ | Cu2+ | Na+ | K+ | Ca2+ | Mg2+ |
O | 0.00003 | 0.02705 | 0.00934 | 0.24683 | 0.42211 | 0.01469 | 0.35250 | 0.11422 |
P | 0.10373 | 0.24197 | 0.05964 | 0.00025 | 0.37579 | 0.01341 | 0.29651 | 0.06168 |
S | 0.07067 | 0.04807 | 0.03438 | 0.12655 | 0.46773 | 0.01280 | 0.94008 | 0.05000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández Pérez, B.; Ayala Espina, J.; Fernández González, M.d.L.Á. Adsorption of Heavy Metals Ions from Mining Metallurgical Tailings Leachate Using a Shell-Based Adsorbent: Characterization, Kinetics and Isotherm Studies. Materials 2022, 15, 5315. https://doi.org/10.3390/ma15155315
Fernández Pérez B, Ayala Espina J, Fernández González MdLÁ. Adsorption of Heavy Metals Ions from Mining Metallurgical Tailings Leachate Using a Shell-Based Adsorbent: Characterization, Kinetics and Isotherm Studies. Materials. 2022; 15(15):5315. https://doi.org/10.3390/ma15155315
Chicago/Turabian StyleFernández Pérez, Begoña, Julia Ayala Espina, and María de Los Ángeles Fernández González. 2022. "Adsorption of Heavy Metals Ions from Mining Metallurgical Tailings Leachate Using a Shell-Based Adsorbent: Characterization, Kinetics and Isotherm Studies" Materials 15, no. 15: 5315. https://doi.org/10.3390/ma15155315
APA StyleFernández Pérez, B., Ayala Espina, J., & Fernández González, M. d. L. Á. (2022). Adsorption of Heavy Metals Ions from Mining Metallurgical Tailings Leachate Using a Shell-Based Adsorbent: Characterization, Kinetics and Isotherm Studies. Materials, 15(15), 5315. https://doi.org/10.3390/ma15155315