Strain-Controlled Fatigue Behavior and Microevolution of 316L Stainless Steel under Cyclic Shear Path
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Experimental Setup and Specimens
2.2. Experimental Materials and Methods
3. Experimental Results and Analysis
4. Microstructure Evolution during Cyclic Shear Loading
5. Conclusions
- Under the cyclic shear path at room temperature, 316L exhibits cyclic hardening, saturation, and cyclic softening. The hardening rate is positively correlated with the strain amplitude.
- The cyclic hardening and cyclic softening of 316L each account for approximately 50% of the life cycle, and the half-life coincides with the saturation period of cyclic hardening.
- The deformation-induced martensitic transformation causes cyclic hardening of 316L austenitic stainless steel, whereas the fatigue life is reduced due to the rapid crack expansion caused by the deformation-induced martensitic transformation. The fatigue life is negatively correlated with the strain amplitude.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Facheris, G.; Janssens, K.G.F. Cyclic mechanical behavior of 316L: Uniaxial LCF and strain-controlled ratcheting tests. Nucl. Eng. Des. 2013, 257, 100–108. [Google Scholar] [CrossRef]
- Hug, E.; Prasath Babu, R.; Monnet, I.; Etienne, A.; Moisy, F.; Pralong, V.; Enikeev, N.; Abramova, M.; Sauvage, X.; Radiguet, B. Impact of the nanostructuration on the corrosion resistance and hardness of irradiated 316 austenitic stainless steels. Appl. Surf. Sci. 2017, 392, 1026–1035. [Google Scholar] [CrossRef]
- Fu, C.; Li, J.; Bai, J.; Li, Y.; Chen, Q.; Lei, G.; Lin, J.; Zhu, Z.; Meng, Y. Effect of helium bubbles on irradiation hardening of additive manufacturing 316L stainless steel under high temperature He ions irradiation. J. Nucl. Mater. 2021, 550, 152948. [Google Scholar] [CrossRef]
- Mazánová, V.; Heczko, M.; Škorík, V.; Chlupová, A.; Polák, J.; Kruml, T. Microstructure and martensitic transformation in 316L austenitic steel during multiaxial low cycle fatigue at room temperature. Mater. Sci. Eng. A 2019, 767, 138407. [Google Scholar] [CrossRef]
- Pham, M.S.; Holdsworth, S.R.; Janssens, K.G.F.; Mazza, E. Cyclic deformation response of AISI 316L at room temperature: Mechanical behaviour, microstructural evolution, physically-based evolutionary constitutive modelling. Int. J. Plast. 2013, 47, 143–164. [Google Scholar] [CrossRef]
- Zhu, Y. Cyclic torsion behavior and the related thermal response of 316L stainless steel tube: Experiments and FE simulations. Int. J. Mech. Sci. 2017, 128–129, 17–22. [Google Scholar] [CrossRef]
- Chang, B.; Zhang, Z. Cyclic deformation behavior of 316LN under non-proportional loading based on the analysis on the hysteresis loop and microstructure. Mater. Sci. Eng. A 2013, 565, 373–381. [Google Scholar] [CrossRef]
- Facheris, G.; Janssens, K.G.F.; Foletti, S. Multiaxial fatigue behavior of AISI 316L subjected to strain-controlled and ratcheting paths. Int. J. Fatigue 2014, 68, 195–208. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, Z.; Kanouté, P.; Retraint, D. Experimental analysis and constitutive modelling of cyclic behaviour of 316L steels including hardening/softening and strain range memory effect in LCF regime. Int. J. Plast. 2018, 107, 54–78. [Google Scholar] [CrossRef]
- Kang, G.; Dong, Y.; Wang, H.; Liu, Y.; Cheng, X. Dislocation evolution in 316L stainless steel subjected to uniaxial ratchetting deformation. Mater. Sci. Eng. A 2010, 527, 5952–5961. [Google Scholar] [CrossRef]
- Spätig, P.; Heczko, M.; Kruml, T.; Seifert, H.P. Influence of mean stress and light water reactor environment on fatigue life and dislocation microstructures of 316L austenitic steel. J. Nucl. Mater. 2018, 509, 15–28. [Google Scholar] [CrossRef]
- Lo, K.H.; Shek, C.H.; Lai, J.K.L. Recent developments in stainless steels. Mater. Sci. Eng. R Rep. 2009, 65, 39–104. [Google Scholar] [CrossRef]
- Naghizadeh, M.; Mirzadeh, H. Modeling the kinetics of deformation-induced martensitic transformation in AISI 316 metastable austenitic stainless steel. Vacuum 2018, 157, 243–248. [Google Scholar] [CrossRef]
- Li, Y.; Martín, D.S.; Wang, J.; Wang, C.; Xu, W. A review of the thermal stability of metastable austenite in steels: Martensite formation. J. Mater. Sci. Technol. 2021, 91, 200–214. [Google Scholar] [CrossRef]
- Mao, W.; Gong, W.; Kawasaki, T.; Harjo, S. Effect of deformation-induced martensitic transformation on nonuniform deformation of metastable austenitic steel. Mater. Sci. Eng. A 2022, 837, 142758. [Google Scholar] [CrossRef]
- Li, Y.; Yu, D.; Li, B.; Chen, X. Martensitic transformation of an austenitic stainless steel under non-proportional cyclic loading. Int. J. Fatigue 2019, 124, 338–347. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Gong, M.; Xia, Y. Dynamic behavior of SUS304 stainless steel at elevated temperatures. J. Mater. Sci. 2004, 39, 4869–4875. [Google Scholar] [CrossRef]
- Talonen, J.; Hänninen, H. Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Mater. 2007, 55, 6108–6118. [Google Scholar] [CrossRef]
- Dan, W.J.; Zhang, W.G.; Li, S.H.; Lin, Z.Q. Finite element simulation on strain-induced martensitic transformation effects in TRIP steel sheet forming. Comput. Mater. Sci. 2007, 39, 593–599. [Google Scholar] [CrossRef]
- Okayasu, M.; Fukui, H.; Ohfuji, H.; Shiraishi, T. Strain-induced martensite formation in austenitic stainless steel. J. Mater. Sci. 2013, 48, 6157–6166. [Google Scholar] [CrossRef]
- Das, A.; Sivaprasad, S.; Chakraborti, P.C.; Tarafder, S. Correspondence of fracture surface features with mechanical properties in 304LN stainless steel. Mater. Sci. Eng. A 2008, 496, 98–105. [Google Scholar] [CrossRef]
- Branco, R.; Prates, P.A.; Costa, J.D.; Berto, F.; Kotousov, A. New methodology of fatigue life evaluation for multiaxially loaded notched components based on two uniaxial strain-controlled tests. Int. J. Fatigue 2018, 111, 308–320. [Google Scholar] [CrossRef]
- Pelegatti, M.; Lanzutti, A.; Salvati, E.; Srnec Novak, J.; De Bona, F.; Benasciutti, D. Cyclic Plasticity and Low Cycle Fatigue of an AISI 316L Stainless Steel: Experimental Evaluation of Material Parameters for Durability Design. Materials 2021, 14, 3588. [Google Scholar] [CrossRef]
- Li, K.-S.; Wang, J.; Fan, Z.-C.; Cheng, L.-Y.; Yao, S.-L.; Wang, R.-Z.; Zhang, X.-C.; Tu, S.-T. A life prediction method and damage assessment for creep-fatigue combined with high-low cyclic loading. Int. J. Fatigue 2022, 161, 106923. [Google Scholar] [CrossRef]
- Kowal, M.; Szala, M. Diagnosis of the microstructural and mechanical properties of over century-old steel railway bridge components. Eng. Fail. Anal. 2020, 110, 104447. [Google Scholar] [CrossRef]
- Dutta, S.; Karmakar, A.; Roy, H.; Barat, K. Automatic estimation of mechanical properties from fractographs using optimal anisotropic diffusion and Voronoi tessellation. Measurement 2019, 134, 574–585. [Google Scholar] [CrossRef]
- Macek, W.; Robak, G.; Żak, K.; Branco, R. Fracture surface topography investigation and fatigue life assessment of notched austenitic steel specimens. Eng. Fail. Anal. 2022, 135, 106121. [Google Scholar] [CrossRef]
- Macek, W.; Pejkowski, Ł.; Branco, R.; Masoudi Nejad, R.; Żak, K. Fatigue fracture surface metrology of thin-walled tubular austenitic steel specimens after asynchronous loadings. Eng. Fail. Anal. 2022, 138, 106354. [Google Scholar] [CrossRef]
- Bouvier, S.; Haddadi, H.; Levée, P.; Teodosiu, C. Simple shear tests: Experimental techniques and characterization of the plastic anisotropy of rolled sheets at large strains. J. Mater. Process. Technol. 2006, 172, 96–103. [Google Scholar] [CrossRef]
- Yin, Q.; Zillmann, B.; Suttner, S.; Gerstein, G.; Biasutti, M.; Tekkaya, A.E.; Wagner, M.F.X.; Merklein, M.; Schaper, M.; Halle, T.; et al. An experimental and numerical investigation of different shear test configurations for sheet metal characterization. Int. J. Solids Struct. 2014, 51, 1066–1074. [Google Scholar] [CrossRef] [Green Version]
- Yin, Q.; Soyarslan, C.; Isik, K.; Tekkaya, A.E. A grooved in-plane torsion test for the investigation of shear fracture in sheet materials. Int. J. Solids Struct. 2015, 66, 121–132. [Google Scholar] [CrossRef]
- Brosius, A.; Yin, Q.; Güner, A.; Tekkaya, A.E. A New Shear Test for Sheet Metal Characterization. Steel Res. Int. 2011, 82, 323–328. [Google Scholar] [CrossRef]
- Zhang, Z.; Yue, Z.; Qi, J.; Gao, J.; Qiu, Y. Low cycle fatigue performance of DP900 steel under cyclic shear paths. Fatigue Fract. Eng. Mater. Struct. 2021, 45, 22–39. [Google Scholar] [CrossRef]
- Yin, Q.; Soyarslan, C.; Güner, A.; Brosius, A.; Tekkaya, A.E. A cyclic twin bridge shear test for the identification of kinematic hardening parameters. Int. J. Mech. Sci. 2012, 59, 31–43. [Google Scholar] [CrossRef]
- Shao, C.W.; Zhang, P.; Liu, R.; Zhang, Z.J.; Pang, J.C.; Zhang, Z.F. Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: Property evaluation, damage mechanisms and life prediction. Acta Mater. 2016, 103, 781–795. [Google Scholar] [CrossRef]
- She, M.; Liu, X.; He, G. The deformation-induced martensite and dynamic strain aging during cyclic deformation in AISI 321. Mater. Res. Express 2018, 6, 026530. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Cr | Ni | Mo | N |
---|---|---|---|---|---|---|---|---|
0.02 | 0.5 | 1.18 | 0.03 | 0.001 | 16.91 | 10.26 | 2.11 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhang, S.; Bao, Y.; Zhang, Z.; Yue, Z. Strain-Controlled Fatigue Behavior and Microevolution of 316L Stainless Steel under Cyclic Shear Path. Materials 2022, 15, 5362. https://doi.org/10.3390/ma15155362
Liu X, Zhang S, Bao Y, Zhang Z, Yue Z. Strain-Controlled Fatigue Behavior and Microevolution of 316L Stainless Steel under Cyclic Shear Path. Materials. 2022; 15(15):5362. https://doi.org/10.3390/ma15155362
Chicago/Turabian StyleLiu, Xinna, Shuai Zhang, Yanmei Bao, Zhongran Zhang, and Zhenming Yue. 2022. "Strain-Controlled Fatigue Behavior and Microevolution of 316L Stainless Steel under Cyclic Shear Path" Materials 15, no. 15: 5362. https://doi.org/10.3390/ma15155362
APA StyleLiu, X., Zhang, S., Bao, Y., Zhang, Z., & Yue, Z. (2022). Strain-Controlled Fatigue Behavior and Microevolution of 316L Stainless Steel under Cyclic Shear Path. Materials, 15(15), 5362. https://doi.org/10.3390/ma15155362