Numerical Simulation and Experimental Study on Energy Absorption of Foam-Filled Local Nanocrystallized Thin-Walled Tubes under Axial Crushing
Abstract
:1. Introduction
2. Experimental Tests
2.1. Ultrasonic Impact Treatment
2.2. Material Properties
2.3. Specimen Preparation
2.4. Quasi-Static Axial Compression Tests
2.4.1. Empty Thin-Walled Tube
2.4.2. Foam-Filled Thin-Walled Tube
3. Numerical Simulation
3.1. Crashworthiness Assessment
3.2. Validation of FE Models
4. Result and Discussion
4.1. Effects of Local Nanocrystallization Layout on Crashworthiness
4.2. Local Nanocrystallization Layouts on Interaction Effects
4.3. Foam-Filled Nested Tubular Structure Design
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al Galib, D.; Limam, A. Experimental and numerical investigation of static and dynamic axial crushing of circular aluminum tubes. Thin-Walled Struct. 2004, 42, 1103–1137. [Google Scholar] [CrossRef]
- Isaac, C.W.; Oluwole, O. Structural response and performance of hexagonal thin-walled grooved tubes under dynamic impact loading conditions. Eng. Struct. 2018, 167, 459–470. [Google Scholar] [CrossRef]
- Kannan, I.V.; Rajkumar, R. Deformation and energy absorption analysis of simple and multi-cell thin-walled tubes under quasi-static axial crushing. Int. J. Crashworthiness 2020, 25, 121–130. [Google Scholar] [CrossRef]
- Liu, Y. Crashworthiness design of multi-corner thin-walled columns. Thin-Walled Struct. 2008, 46, 1329–1337. [Google Scholar] [CrossRef]
- Rajak, D.K.; Kumaraswamidhas, L.A.; Das, S. Investigation of Mild Steel Thin-Wall Tubes in Unfilled and Foam-Filled Triangle, Square, and Hexagonal Cross Sections Under Compression Load. J. Mater. Eng. Perform. 2018, 27, 1936–1944. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Y.; Wang, J.; Jiang, F.; Wang, C.H. Crashworthiness design of novel hierarchical hexagonal columns. Compos. Struct. 2018, 194, 36–48. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, G.; Zhang, H. Theoretical prediction and numerical simulation of multi-cell square thin-walled structures. Thin-Walled Struct. 2006, 44, 1185–1191. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H. Energy absorption of multi-cell stub columns under axial compression. Thin-Walled Struct. 2013, 68, 156–163. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X.; Wang, J.; Chen, T.; Wang, C.H. Crushing analysis for novel bio-inspired hierarchical circular structures subjected to axial load. Int. J. Mech. Sci. 2018, 140, 407–431. [Google Scholar] [CrossRef]
- Attia, M.S.; Meguid, S.A.; Nouraei, H. Nonlinear finite element analysis of the crush behaviour of functionally graded foam-filled columns. Finite Elem. Anal. Des. 2012, 61, 50–59. [Google Scholar] [CrossRef]
- Meguid, S.A.; Attia, M.S.; Monfort, A. On the crush behaviour of ultralight foam-filled structures. Mater. Des. 2004, 25, 183–189. [Google Scholar] [CrossRef]
- Meguid, S.A.; Heyerman, J.; Stranart, J.C. Finite element modeling of the axial collapse of foam-filled structures. J. Spacecr. Rocket. 2002, 39, 828–832. [Google Scholar] [CrossRef]
- Meguid, S.A.; Stranart, J.C.; Heyerman, J. On the layered micromechanical three-dimensional finite element modelling of foam-filled columns. Finite Elem. Anal. Des. 2004, 40, 1035–1057. [Google Scholar] [CrossRef]
- Meguid, S.A.; Yang, F.; Hou, P. Crush behaviour of foam-filled thin-walled conical frusta: Analytical, numerical and experimental studies. Acta Mech. 2016, 227, 3391–3406. [Google Scholar] [CrossRef]
- Yang, F.; Wang, M.; Hassan, M.T.Z.; Meguid, S.A.; Hamouda, A.M.S. Effect of interfacial friction and fold penetration on the progressive collapse of foam-filled frustum using kinematically admissible model. Int. J. Crashworthiness 2018, 23, 581–592. [Google Scholar] [CrossRef]
- Goel, M.D. Deformation, energy absorption and crushing behavior of single-, double- and multi-wall foam filled square and circular tubes. Thin-Walled Struct. 2015, 90, 1–11. [Google Scholar] [CrossRef]
- Hanssen, A.C.; Langseth, M.; Hopperstad, O.S. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler. Int. J. Impact Eng. 2000, 24, 475–507. [Google Scholar] [CrossRef]
- Mirfendereski, L.; Salimi, M.; Ziaei-Rad, S. Parametric study and numerical analysis of empty and foam-filled thin-walled tubes under static and dynamic loadings. Int. J. Mech. Sci. 2008, 50, 1042–1057. [Google Scholar] [CrossRef]
- Chen, W.G.; Wierzbicki, T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption. Thin-Walled Struct. 2001, 39, 287–306. [Google Scholar] [CrossRef]
- An, X.Z.; Gao, Y.K.; Fang, J.G.; Sun, G.Y.; Li, Q. Crashworthiness design for foam-filled thin-walled structures with functionally lateral graded thickness sheets. Thin-Walled Struct. 2015, 91, 63–71. [Google Scholar] [CrossRef]
- Yu, Y.; Cao, Z.; Tu, G.; Mu, Y. Energy Absorption of Different Cell Structures for Closed-Cell Foam-Filled Tubes Subject to Uniaxial Compression. Metals 2020, 10, 1579. [Google Scholar] [CrossRef]
- Salehi, M.; Mirbagheri, S.M.H.; Ramiani, A.J. Efficient energy absorption of functionally-graded metallic foam-filled tubes under impact loading. Trans. Nonferrous Met. Soc. China 2021, 31, 92–110. [Google Scholar] [CrossRef]
- Zhang, Y.; He, S.; Liu, J.; Zhao, W.; Gong, X.; Yu, J. Density gradient tailoring of aluminum foam-filled tube. Compos. Struct. 2019, 220, 451–459. [Google Scholar] [CrossRef]
- Song, J.; Xu, S.; Xu, L.; Zhou, J.; Zou, M. Experimental study on the crashworthiness of bio-inspired aluminum foam-filled tubes under axial compression loading. Thin-Walled Struct. 2020, 155, 106937. [Google Scholar] [CrossRef]
- Song, H.W.; Fan, Z.H.; Yu, G.; Wang, Q.C.; Tobota, A. Partition energy absorption of axially crushed aluminum foam-filled hat sections. Int. J. Solids Struct. 2005, 42, 2575–2600. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X. Axial crushing of self-lock multi-cell tubes with foam filler and tube envelope. Thin-Walled Struct. 2020, 155, 106847. [Google Scholar] [CrossRef]
- Hou, S.; Han, X.; Sun, G.; Long, S.; Li, W.; Yang, X.; Li, Q. Multiobjective optimization for tapered circular tubes. Thin-Walled Struct. 2011, 49, 855–863. [Google Scholar] [CrossRef]
- Hou, S.; Li, Q.; Long, S.; Yang, X.; Li, W. Crashworthiness design for foam filled thin-wall structures. Mater. Des. 2009, 30, 2024–2032. [Google Scholar] [CrossRef]
- Song, X.; Sun, G.; Li, G.; Gao, W.; Li, Q. Crashworthiness optimization of foam-filled tapered thin-walled structure using multiple surrogate models. Struct. Multidiscip. Optim. 2013, 47, 221–231. [Google Scholar] [CrossRef]
- Sun, G.; Li, G.; Hou, S.; Zhou, S.; Li, W.; Li, Q. Crashworthiness design for functionally graded foam-filled thin-walled structures. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2010, 527, 1911–1919. [Google Scholar] [CrossRef]
- Sun, G.; Li, S.; Liu, Q.; Li, G.; Li, Q. Experimental study on crashworthiness of empty/aluminum foam/honeycomb-filled CFRP tubes. Compos. Struct. 2016, 152, 969–993. [Google Scholar] [CrossRef]
- Sun, G.; Liu, T.; Huang, X.; Zhen, G.; Li, Q. Topological configuration analysis and design for foam filled multi-cell tubes. Eng. Struct. 2018, 155, 235–250. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, G.; Li, G.; Luo, Z.; Li, Q. Optimization of foam-filled bitubal structures for crashworthiness criteria. Mater. Des. 2012, 38, 99–109. [Google Scholar] [CrossRef]
- Zheng, G.; Wu, S.; Sun, G.; Li, G.; Li, Q. Crushing analysis of foam-filled single and bitubal polygonal thin-walled tubes. Int. J. Mech. Sci. 2014, 87, 226–240. [Google Scholar] [CrossRef]
- Ghamarian, A.; Azarakhsh, S. Axial crushing analysis of polyurethane foam-filled combined thin-walled structures: Experimental and numerical analysis. Int. J. Crashworthiness 2019, 24, 632–644. [Google Scholar] [CrossRef]
- Li, Z.; Chen, W.; Hao, H. Dynamic crushing and energy absorption of foam filled multi-layer folded structures: Experimental and numerical study. Int. J. Impact Eng. 2019, 133, 103341. [Google Scholar] [CrossRef]
- Niknejad, A.; Assaee, H.; Elahi, S.A.; Golriz, A. Flattening process of empty and polyurethane foam-filled E-glass/vinylester composite tubes—An experimental study. Compos. Struct. 2013, 100, 479–492. [Google Scholar] [CrossRef]
- Sebaey, T.A.; Rajak, D.K.; Mehboob, H. Internally stiffened foam-filled carbon fiber reinforced composite tubes under impact loading for energy absorption applications. Compos. Struct. 2021, 255, 112910. [Google Scholar] [CrossRef]
- Yalcin, M.M.; Genel, K. On the axial deformation characteristic of PVC foam-filled circular aluminium tube: Effect of radially-graded foam filling. Thin-Walled Struct. 2019, 144, 106335. [Google Scholar] [CrossRef]
- Mohsenizadeh, S.; Ahmad, Z. Auxeticity effect on crushing characteristics of auxetic foam-filled square tubes under axial loading. Thin-Walled Struct. 2019, 145, 106379. [Google Scholar] [CrossRef]
- Mohsenizadeh, S.; Alipour, R.; Ahmad, Z.; Alias, A. Influence of auxetic foam in quasi-static axial crushing. Int. J. Mater. Res. 2016, 107, 916–924. [Google Scholar] [CrossRef]
- Li, M.; Li, J.; Barbat, S.; Baccouche, R.; Lu, W. Enhanced filler-tube wall interaction in liquid nanofoam-filled thin-walled tubes. Compos. Struct. 2018, 200, 120–126. [Google Scholar] [CrossRef]
- Li, M.; Barbat, S.; Baccouche, R.; Belwafa, J.; Lu, W. Enhanced energy mitigation of thin-walled tube filled with liquid nanofoam under dynamic impact. Compos. Part B-Eng. 2020, 193, 108047. [Google Scholar] [CrossRef]
- Dao, M.; Lu, L.; Asaro, R.J.; De Hosson, J.T.M.; Ma, E. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 2007, 55, 4041–4065. [Google Scholar] [CrossRef]
- Lu, K.; Lu, J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach. J. Mater. Sci. Technol. 1999, 15, 193–197. [Google Scholar]
- Valiev, R.Z.; Langdon, T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 2006, 51, 881–981. [Google Scholar] [CrossRef]
- Volokitin, A.; Volokitina, I.; Panin, E.; Naizabekov, A.; Lezhnev, S. Strain state and microstructure evolution of aisi-316 austenitic stainless steel during high-pressure torsion (hpt) process in the new stamp design. Metalurgija 2021, 60, 325–328. [Google Scholar]
- Castro, M.M.; Montoro, L.A.; Isaac, A.; Kawasaki, M.; Figueiredo, R.B. Mechanical mixing of Mg and Zn using high-pressure torsion. J. Alloy. Compd. 2021, 869, 159302. [Google Scholar] [CrossRef]
- An, X.; Rodopoulos, C.A.; Statnikov, E.S.; Vitam, V.N.; Korolkov, O.V. Study of the surface nanocrystallization induced by the Esonix Ultrasonic Impact Treatment on the near-surface of 2024-T351 aluminum alloy. J. Mater. Eng. Perform. 2006, 15, 355–364. [Google Scholar] [CrossRef]
- Chen, C.; Chen, F.; Zhang, H. Surface Nanocrystallization of 7A52 Aluminum Alloy Welded Joint by Aging and Ultrasonic Impact Compound Treatment. Rare Met. Mater. Eng. 2018, 47, 2637–2641. [Google Scholar] [CrossRef]
- Zhu, L.; Guan, Y.; Wang, Y.; Xie, Z.; Lin, J. Influence of process parameters of ultrasonic shot peening on surface nanocrystallization and hardness of pure titanium. Int. J. Adv. Manuf. Technol. 2017, 89, 1451–1468. [Google Scholar] [CrossRef]
- Tao, N.R.; Sui, M.L.; Lu, J.; Lu, K. Surface nanocrystallization of iron induced by ultrasonic shot peening. Nanostructured Mater. 1999, 11, 433–440. [Google Scholar] [CrossRef]
- Tang, T.; Gao, Y.; Yao, L.; Li, Y.; Lu, J. Development of high-performance energy absorption component based on the structural design and nanocrystallization. Mater. Des. 2018, 137, 214–225. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, Z.; Wang, W.; Tong, Z.; Zhou, Z.; Lim, C.W. A novel design of thin-walled energy absorption structures with local surface nanocrystallization. Thin-Walled Struct. 2021, 160, 107337. [Google Scholar] [CrossRef]
- Jia, J.F.; Lai, A.D.; Qu, J.L.; Zhao, J.Y.; Sun, J.B.; Zhou, Z.H.; Xu, X.S.; Lim, C.W. Effects of local thinning defects and stepped thickness for free vibration of cylindrical shells using a symplectic exact solution approach. Acta Astronaut. 2021, 178, 658–671. [Google Scholar] [CrossRef]
- Lai, A.D.; Jia, J.F.; Qu, J.L.; Wang, J.Y.; Sun, J.B.; Zhou, Z.H.; Xu, X.S.; Lim, C.W. Local-global buckling of cylindrical shells with wall thinning defects. Mech. Based Des. Struct. Mach. 2021. [Google Scholar] [CrossRef]
- Qiu, W.B.; Zhou, Z.H.; Xu, X.S. The Dynamic Behavior of Circular Plates Under Impact Loads. J. Vib. Eng. Technol. 2016, 4, 111–116. [Google Scholar]
- Tong, Z.Z.; Ni, Y.W.; Zhou, Z.H.; Xu, X.S.; Zhu, S.B.; Miao, X.Y. Exact Solutions for Free Vibration of Cylindrical Shells by a Symplectic Approach. J. Vib. Eng. Technol. 2018, 6, 107–115. [Google Scholar] [CrossRef]
- Wang, W.; Rong, D.; Xu, C.; Zhang, J.; Xu, X.; Zhou, Z. Accurate Buckling Analysis of Magnetically Affected Cantilever Nanoplates Subjected to In-plane Magnetic Fields. J. Vib. Eng. Technol. 2020, 8, 505–515. [Google Scholar] [CrossRef]
- Nia, A.A.; Parsapour, M. Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections. Thin-Walled Struct. 2014, 74, 155–165. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.; Ling, X.; Wang, D. Enhanced mechanical behaviors of gradient nano-grained austenite stainless steel by means of ultrasonic impact treatment. Results Phys. 2017, 7, 1412–1421. [Google Scholar] [CrossRef]
- Hanssen, A.G.; Langseth, M.; Hopperstad, O.S. Static and dynamic crushing of square aluminium extrusions with aluminium foam filler. Int. J. Impact Eng. 2000, 24, 347–383. [Google Scholar] [CrossRef]
- Liao, M.T.; Chen, W.J. The effect of shielding-gas compositions on the microstructure and mechanical properties of stainless steel weldments. Mater. Chem. Physics. 1998, 55, 145–151. [Google Scholar] [CrossRef]
- Kumar, S.; Shahi, A.S. Effect of heat input on the microstructure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints. Mater. Des. 2011, 32, 3617–3623. [Google Scholar] [CrossRef]
- Yuen, S.C.K.; Nurick, G.N. The energy-absorbing characteristics of tubular structures with geometric and material modifications: An overview. Appl. Mech. Rev. 2008, 61, 020802. [Google Scholar] [CrossRef]
- Zhang, X.; Huh, H. Crushing analysis of polygonal columns and angle elements. Int. J. Impact Eng. 2010, 37, 441–451. [Google Scholar] [CrossRef]
- Xiang, X.; Zou, S.; Ngoc San, H.; Lu, G.; Kong, I. Energy absorption of bio-inspired multi-layered graded foam-filled structures under axial crushing. Compos. Part B Eng. 2020, 198, 108216. [Google Scholar] [CrossRef]
- Deng, X.; Liu, W.; Jin, L. On the crashworthiness analysis and design of a lateral corrugated tube with a sinusoidal cross-section. Int. J. Mech. Sci. 2018, 141, 330–340. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, Z.; Zhou, Z.; Wang, W.; Tong, Z.; Lim, C.W. Local surface nanocrystallization for buckling-resistant thin-walled structures. Int. J. Mech. Mater. Des. 2020, 16, 693–705. [Google Scholar] [CrossRef]
Composition | Fe | Cr | Ni | Mn | Si | N | C | P | S |
---|---|---|---|---|---|---|---|---|---|
Percentage | 72.06 | 18.09 | 8.07 | 1.29 | 0.36 | 0.06 | 0.04 | 0.03 | 0.002 |
Tensile Specimens | Young’s Modulus (GPa) | Elastic Limit (MPa) |
---|---|---|
Untreated | 176.9 | 283.4 |
Nanocrystallized | 199.5 | 709.6 |
Model | EA (J) | SEA (J/g) | PCF (kN) | MCF (kN) |
---|---|---|---|---|
UT | 628.00 | 10.38 | 25.55 | 11.21 |
LNT-2 | 917.00 | 13.01 | 28.90 | 16.37 |
Percentage increase (%) | 46.02 | 25.34 | 13.11 | 46.03 |
Type | Model | EA (J) | Mass (g) | SEA (J/g) | PCF (kN) |
---|---|---|---|---|---|
Foam | Foam | 333 | 42.3 | 7.87 | 12.64 |
Untreated | UT | 628 | 60.5 | 5.42 | 25.55 |
UT + foam | 961 | 102.8 | 9.35 | 28.60 | |
FUT | 1193 | 110.3 | 10.82 | 38.47 | |
Interaction effect | 232 | / | / | / | |
Locally nanocrystallized | LNT-2 | 917 | 70.5 | 13.01 | 28.90 |
LNT2 + foam | 1250 | 112.8 | 11.08 | 32.03 | |
FLNT-2 | 1695 | 111.4 | 15.22 | 44.90 | |
Interaction effect | 445 | / | / | / |
Material | ρ (kg/m3) | E (GPa) | σs (MPa) | ν |
---|---|---|---|---|
Untreated | 7850 | 176.9 | 283.4 | 0.3 |
UITed | 7850 | 199.5 | 709.6 | 0.3 |
Source | Experiment | Experiment | Experiment | Experiment |
Type | ρf (kg/m3) | Ef (MPa) | σp (MPa) | νf | λ |
---|---|---|---|---|---|
Foam | 280 | 60.4 | 2.8 | 0.1 | 1 |
Source | Experiment | Experiment | Experiment | Experiment | Ref. [67] |
Model | Methods | EA (J) | SEA (J/g) | PCF (kN) |
---|---|---|---|---|
FUT | Experiment | 1193 | 10.82 | 38.47 |
Simulation | 1216 | 11.05 | 37.72 | |
Error (%) | 1.93 | 2.13 | −1.95 | |
FLNT-2 | Experiment | 1694 | 15.21 | 44.76 |
Simulation | 1639 | 14.90 | 46.63 | |
Error (%) | −3.25 | −2.04 | 4.18 |
Model | EA (J) | SEA (J/g) | PCF (kN) | MCF (kN) |
---|---|---|---|---|
UT | 682 | 9.57 | 27.13 | 12.18 |
LNT-2 | 997 | 13.99 | 29.66 | 17.80 |
LNT-4 | 1043 | 14.64 | 38.86 | 18.63 |
LNT-6 | 998 | 14.01 | 37.43 | 17.82 |
LNT-8 | 923 | 12.96 | 30.61 | 16.48 |
LNT-10 | 947 | 13.29 | 34.72 | 16.91 |
Model | EA (J) | SEA (J/g) | PCF (kN) | MCF (kN) |
---|---|---|---|---|
FUT | 1216 | 11.05 | 37.72 | 21.71 |
FLNT-2 | 1639 | 14.90 | 46.63 | 29.27 |
FLNT-4 | 1789 | 16.26 | 43.81 | 31.95 |
FLNT-6 | 1762 | 16.02 | 59.10 | 31.46 |
FLNT-8 | 1547 | 14.06 | 53.71 | 27.63 |
FLNT-10 | 1628 | 14.80 | 67.48 | 29.07 |
Model | EA (J) | SEA (J/g) | MCF (kN) | PCF (kN) |
---|---|---|---|---|
Experiment | 1730 | 15.98 | 30.90 | 45.56 |
Simulation | 1789 | 16.26 | 31.94 | 43.81 |
Error (%) | 3.41 | 1.75 | 3.37 | −3.84 |
Model | Configuration | Tube EA (J) | Foam EA (%) | Total EA (J) |
---|---|---|---|---|
FUT | Filled tube components | 815 | 401 | 1216 |
Individuals | 682 | 358 | 1040 | |
Increase in EA | 133 | 43 | 176 | |
FLNT-4 | Filled tube components | 1264 | 525 | 1789 |
Individuals | 1043 | 358 | 1401 | |
Increase in EA | 221 | 167 | 388 |
Model | Mass (g) | EA (J) | SEA (J/g) | PCF (kN) | MCF (kN) |
---|---|---|---|---|---|
FLNT-4 | 110 | 1789 | 16.26 | 43.81 | 31.95 |
N-2-FLNT-4 | 147 | 2961 | 20.16 | 85.64 | 52.88 |
Percentage increase (%) | 33.64 | 65.51 | 23.99 | 95.48 | 65.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Wang, Y.; Zhao, Z.; Tong, Z.; Xu, X.; Lim, C.W. Numerical Simulation and Experimental Study on Energy Absorption of Foam-Filled Local Nanocrystallized Thin-Walled Tubes under Axial Crushing. Materials 2022, 15, 5556. https://doi.org/10.3390/ma15165556
Wang W, Wang Y, Zhao Z, Tong Z, Xu X, Lim CW. Numerical Simulation and Experimental Study on Energy Absorption of Foam-Filled Local Nanocrystallized Thin-Walled Tubes under Axial Crushing. Materials. 2022; 15(16):5556. https://doi.org/10.3390/ma15165556
Chicago/Turabian StyleWang, Wei, Yajing Wang, Zhen Zhao, Zhenzhen Tong, Xinsheng Xu, and Chee Wah Lim. 2022. "Numerical Simulation and Experimental Study on Energy Absorption of Foam-Filled Local Nanocrystallized Thin-Walled Tubes under Axial Crushing" Materials 15, no. 16: 5556. https://doi.org/10.3390/ma15165556
APA StyleWang, W., Wang, Y., Zhao, Z., Tong, Z., Xu, X., & Lim, C. W. (2022). Numerical Simulation and Experimental Study on Energy Absorption of Foam-Filled Local Nanocrystallized Thin-Walled Tubes under Axial Crushing. Materials, 15(16), 5556. https://doi.org/10.3390/ma15165556