Third-Order Effective Properties for Random-Packing Systems Using Statistical Micromechanics Based on a GPU Parallel Algorithm in Fast Computing n-Point Correlation Functions
Abstract
:1. Introduction
2. Fundamental Theory
2.1. n-Point Correlation Functions
2.2. Third-Order Models of Effective Material Behavior
3. GPU-Based Parallel Algorithm
3.1. Sampling of n-Point (n = 1, 2, and 3) Correlation Functions
3.2. Verification
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torquato, S. Random Heterogeneous Materials: Microstructure and Macroscopic Properties; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Li, M.; Chen, H.; Li, X.; Liu, L.; Lin, J. Permeability of granular media considering the effect of grain composition on tortuosity. Int. J. Eng. Sci. 2022, 174, 103658. [Google Scholar] [CrossRef]
- Li, M.; Chen, H.; Lin, J. Numerical study for the percolation threshold and transport properties of porous composites comprising non-centrosymmetrical superovoidal pores. Comput. Methods Appl. Mech. Eng. 2020, 361, 112815. [Google Scholar] [CrossRef]
- Torquato, S. Predicting transport characteristics of hyperuniform porous media via rigorous microstructure-property relations. Adv. Water Resour. 2020, 140, 103565. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, W.; Chen, H.; Zhang, R.; Liu, L. Effect of pore characteristic on the percolation threshold and diffusivity of porous media comprising overlapping concave-shaped pores. Int. J. Heat Mass Transf. 2019, 138, 1333–1345. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, K.; Zhang, Y.; Jiang, J. Packing Fraction, Tortuosity and Permeability of Granular-Porous Media With Densely Packed Spheroidal Particles: Monodisperse and Polydisperse Systems. Water Resour. Res. 2022, 58, e2021WR031433. [Google Scholar] [CrossRef]
- Torquato, S.; Kim, J. Nonlocal effective electromagnetic wave characteristics of composite media: Beyond the quasistatic regime. Phys. Rev. X 2021, 11, 021002. [Google Scholar] [CrossRef]
- Hashin, Z.; Shtrikman, S. A variational approach to the theory of the elastic behaviour of polycrystals. J. Mech. Phys. Solids 1962, 10, 343–352. [Google Scholar] [CrossRef]
- Hashin, Z.; Shtrikman, S. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 1963, 11, 127–140. [Google Scholar] [CrossRef]
- Brown, W.F., Jr. Solid mixture permittivities. J. Chem. Phys. 1955, 23, 1514–1517. [Google Scholar] [CrossRef]
- Beran, M. Use of the vibrational approach to determine bounds for the effective permittivity in random media. Il Nuovo Cim. 1965, 38, 771–782. [Google Scholar] [CrossRef]
- Torquato, S. Microscopic Approach to Transport in Two-Phase Random Media. Ph.D. Thesis, State University of New York at Stony Brook, New York, NY, USA, 1980. [Google Scholar]
- Milton, G. Bounds on the electromagnetic, elastic, and other properties of two-component composites. Phys. Rev. Lett. 1981, 46, 542. [Google Scholar] [CrossRef]
- Torquato, S. Effective electrical conductivity of two-phase disordered composite media. J. Appl. Phys. 1985, 58, 3790–3797. [Google Scholar] [CrossRef]
- Chan Kim, I.; Torquato, S. Effective conductivity of suspensions of hard spheres by Brownian motion simulation. J. Appl. Phys. 1991, 69, 2280–2289. [Google Scholar] [CrossRef] [Green Version]
- Beasley, J.; Torquato, S. Bounds on the conductivity of a suspension of random impenetrable spheres. J. Appl. Phys. 1986, 60, 3576–3581. [Google Scholar] [CrossRef] [Green Version]
- Torquato, S.; Lado, F. Effective properties of two-phase disordered composite media: II. Evaluation of bounds on the conductivity and bulk modulus of dispersions of impenetrable spheres. Phys. Rev. B 1986, 33, 6428. [Google Scholar]
- Miller, C.; Torquato, S. Effective conductivity of hard-sphere dispersions. J. Appl. Phys. 1990, 68, 5486–5493. [Google Scholar] [CrossRef]
- Liasneuski, H.; Hlushkou, D.; Khirevich, S.; Höltzel, A.; Tallarek, U.; Torquato, S. Impact of microstructure on the effective diffusivity in random packings of hard spheres. J. Appl. Phys. 2014, 116, 034904. [Google Scholar] [CrossRef] [Green Version]
- Gillman, A.; Matouš, K. Third-order model of thermal conductivity for random polydisperse particulate materials using well-resolved statistical descriptions from tomography. Phys. Lett. A 2014, 378, 3070–3073. [Google Scholar] [CrossRef]
- Helte, A. Fourth-order bounds on the effective bulk and shear moduli of random dispersions of penetrable spheres. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1995, 450, 651–665. [Google Scholar]
- Gillman, A.; Amadio, G.; Matouš, K.; Jackson, T. Third-order thermo-mechanical properties for packs of Platonic solids using statistical micromechanics. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20150060. [Google Scholar] [CrossRef]
- Hlushkou, D.; Liasneuski, H.; Tallarek, U.; Torquato, S. Effective diffusion coefficients in random packings of polydisperse hard spheres from two-point and three-point correlation functions. J. Appl. Phys. 2015, 118, 124901. [Google Scholar] [CrossRef]
- McPhedran, R.C.; Milton, G.W. Bounds and exact theories for the transport properties of inhomogeneous media. Appl. Phys. A 1981, 26, 207–220. [Google Scholar] [CrossRef]
- Li, H. Microstructural Quantification, Property Prediction, and Stochastic Reconstruction of Heterogeneous Materials Using Limited X-Ray Tomography Data. Ph.D. Thesis, Arizona State University, Phoenix, AZ, USA, 2017. [Google Scholar]
- Jiao, Y.; Torquato, S. Quantitative characterization of the microstructure and transport properties of biopolymer networks. Phys. Biol. 2012, 9, 036009. [Google Scholar] [CrossRef]
- Berryman, J.G. Measurement of spatial correlation functions using image processing techniques. J. Appl. Phys. 1985, 57, 2374–2384. [Google Scholar] [CrossRef]
- Zhong, W.; Yu, A.; Liu, X.; Tong, Z.; Zhang, H. DEM/CFD-DEM modelling of non-spherical particulate systems: Theoretical developments and applications. Powder Technol. 2016, 302, 108–152. [Google Scholar] [CrossRef]
GPU | 0.12 s | 14.63 s | 101,679.53 s (≈28 h) |
CPU | 12.96 s | 1057.95 s | 9,691,950.31 s (≈2139 h) |
| |||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, S.; Chen, H.; Lin, J. Third-Order Effective Properties for Random-Packing Systems Using Statistical Micromechanics Based on a GPU Parallel Algorithm in Fast Computing n-Point Correlation Functions. Materials 2022, 15, 5799. https://doi.org/10.3390/ma15165799
Sun S, Chen H, Lin J. Third-Order Effective Properties for Random-Packing Systems Using Statistical Micromechanics Based on a GPU Parallel Algorithm in Fast Computing n-Point Correlation Functions. Materials. 2022; 15(16):5799. https://doi.org/10.3390/ma15165799
Chicago/Turabian StyleSun, Shaobo, Huisu Chen, and Jianjun Lin. 2022. "Third-Order Effective Properties for Random-Packing Systems Using Statistical Micromechanics Based on a GPU Parallel Algorithm in Fast Computing n-Point Correlation Functions" Materials 15, no. 16: 5799. https://doi.org/10.3390/ma15165799
APA StyleSun, S., Chen, H., & Lin, J. (2022). Third-Order Effective Properties for Random-Packing Systems Using Statistical Micromechanics Based on a GPU Parallel Algorithm in Fast Computing n-Point Correlation Functions. Materials, 15(16), 5799. https://doi.org/10.3390/ma15165799