Effect of Chromium Content on the Oxidation Behavior of a Ta Stabilized γ’-Strengthened Polycrystalline Co-30Ni-10Al-4W-4Ti-2Ta Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Alloy Microstructure and Constitution before Oxidation
3.2. Oxidation Behavior
3.2.1. Global Oxidation Kinetics
3.2.2. Morphology and Phase Composition of Oxidized Surfaces
3.2.3. Cross-Sectional Investigation of Oxide Layers
3.2.4. Details on Multilayered Oxide Scale Growth
4. Discussion
4.1. The Evolution of Oxide Film Structure
4.2. Composition of Multilayered Oxides after 100 h Exposure
5. Conclusions
- (1)
- The oxidation kinetics of the three alloys is parabolic at 900 °C for durations up to 100 h, with the parabolic oxidation rate decreasing as the chromium content increased. Furthermore, long-term oxidation results in the formation of granular alumina.
- (2)
- Under isothermal oxidation, three layers of oxides are discovered in the 3Cr and 5Cr alloys. The outer layer is composed of Co3O4, CrTaO4, and CoAl2O4, while the middle layers are composed of Al2O3, Cr2O3, TiO2, and TiTaO4, and the internal oxides are Al2O3 precipitates. These low-oxygen diffusivity oxide scales adhere well to the substrate and each other, protecting the alloy from high-temperature oxidation. Nonetheless, the effect of Cr on the formation of Cr2O3 is the most important factor in improving oxidation resistance.
- (3)
- In both 3Cr and 5Cr alloys, oxidation-resistant and protective oxide scales can form, and samples with higher Cr contents demonstrate greater resistance to scale growth. At 900 °C for 100 h, 5% Cr and 10% Al result in multilayer oxide scales of Al2O3, Cr2O3, and TiTaO4 that are protective and limit oxygen inward diffusion. The three alloys investigated in this study have typical Cr2O3 oxidation kinetics, even though they also form alumina layers.
- (4)
- Using the oxide parabolic growth rate as a guide, adding 5 at.% Cr reduces the oxidation rate by three orders of magnitude. Without the addition of Cr, Al alone cannot form a protective oxide scale on the surface at 900 °C. Therefore, chromium may aid in the formation of stable Cr2O3, Al2O3, and TiTaO4 layers, which in turn hampers outer Co and Ni, and inward oxygen flux.
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Ismail, F.B.; Vorontsov, V.A.; Lindley, T.C.; Hardy, M.C.; Dye, D.; Shollock, B.A. Alloying effects on oxidation mechanisms in polycrystalline Co-Ni base superalloys. Corros. Sci. 2017, 116, 44–52. [Google Scholar] [CrossRef]
- Sato, J.; Omori, T.; Oikawa, K.; Ohnuma, I.; Kainuma, R.; Ishida, K. Cobalt-base high-temperature alloys. Science 2006, 312, 90–91. [Google Scholar] [CrossRef] [PubMed]
- Shinagawa, K.; Omori, T.; Sato, J.; Oikawa, K.; Ohnuma, I.; Kainuma, R.; Ishida, K. Phase equilibria and microstructure on γ′ phase in Co-Ni-Al-W system. Mater. Trans. 2008, 49, 1474–1479. [Google Scholar] [CrossRef] [Green Version]
- Ooshima, M.; Tanaka, K.; Okamoto, N.L.; Kishida, K.; Inui, H. Effects of quaternary alloying elements on the γ′ solvus temperature of Co-Al-W based alloys with fcc/L12 two-phase microstructures. J. Alloy. Compd. 2010, 508, 71–78. [Google Scholar] [CrossRef]
- Pollock, T.M.; Dibbern, J.; Tsunekane, M.; Zhu, J.; Suzuki, A. New Co-based γ-γ′ high-temperature alloys. JoM 2010, 62, 58–63. [Google Scholar] [CrossRef]
- Bauer, A.; Neumeier, S.; Pyczak, F.; Singer, R.F.; Göken, M. Creep properties of different γ′-strengthened Co-base superalloys. Mater. Sci. Eng. A 2012, 550, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Mottura, A.; Janotti, A.; Pollock, T.M. Alloying effects in the γ′ phase of Co-based superalloys. In Superalloys 2012; Huron, S.E., Reed, R.C., Hardy, M.C., Mills, M.J., Montero, R.E., Portella, P.D., Telesman, J., Eds.; TMS: Warrendale, PA, USA, 2012; pp. 685–693. [Google Scholar]
- Makineni, S.K.; Nithin, B.; Chattopadhyay, K. Synthesis of a new tungsten-free γ-γ′ cobalt-based superalloy by tuning alloying additions. Acta Mater. 2015, 85, 85–94. [Google Scholar] [CrossRef]
- Qu, S.S.; Li, Y.J.; Wang, C.; Liu, X.; Qian, K.; Ruan, J.; Chen, Y.; Yang, Y.S. Coarsening behavior of γ’ precipitates and compression deformation mechanism of a novel Co-V-Ta-Ti superalloy. Mater. Sci. Eng. A 2020, 787, 139455. [Google Scholar] [CrossRef]
- Qu, S.S.; Li, Y.J.; He, M.; Wang, C.; Liu, X.; Chen, Y.; Yang, Y.S. Microstructural evolution and compression property of a novel γʹ-strengthened directionally solidified CoNi-base superalloy. Mater. Sci. Eng. A 2019, 761, 138034. [Google Scholar] [CrossRef]
- Lass, E.A. Application of computational thermodynamics to the design of a Co-Ni-based γ′-strengthened superalloy. Metall. Mater. Trans. A 2017, 48, 2443–2459. [Google Scholar] [CrossRef]
- Zhou, H.; Li, W.; Xue, F.; Zhang, L.; Qu, X.; Feng, Q. Alloying effects on microstructural stability and γ′ phase nano-hardness in Co-Al-W-Ta-Ti-base superalloys. In Superalloys 2016; Hardy, M., Huron, E., Glatzel, U., Griffin, B., Lewis, B., Rae, C., Seetharaman, V., Tin, S., Eds.; TMS: Warrendale, PA, USA, 2016; pp. 981–990. [Google Scholar] [CrossRef]
- Qu, S.S.; Li, Y.; Tong, M.; Wang, C.; Yang, Y. Effects of 1 at.% Ta substitution for 1 at.% W on the coarsening kinetics and deformation behavior of γ’-strengthened CoNi-base superalloys. Mater. Sci. Eng. A 2021, 823, 141776. [Google Scholar] [CrossRef]
- Li, W.; Li, L.; Antonov, S.; Feng, Q. Effective design of a Co-Ni-Al-W-Ta-Ti alloy with high γ′ solvus temperature and microstructural stability using combined CALPHAD and experimental approaches. Mater. Des. 2019, 180, 107912. [Google Scholar] [CrossRef]
- Li, W.; Li, L.; Antonov, S.; Lu, F.; Feng, Q. Effects of Cr and Al/W ratio on the microstructural stability, oxidation property and γ′ phase nano-hardness of multi-component Co-Ni-base superalloys. J. Alloy. Compd. 2020, 826, 154182. [Google Scholar] [CrossRef]
- Yeh, A.C.; Wang, S.C.; Cheng, C.F.; Chang, Y.J.; Chang, S.C. Oxidation behaviour of Si-bearing Co-based alloys. Oxid. Met. 2016, 86, 99–112. [Google Scholar] [CrossRef]
- Zhuang, X.; Li, L.; Feng, Q. Effects of Al, Cr, and Ti on the oxidation behaviors of multi-component γ/γ’ CoNi-based superalloys. In Superalloys 2020; Tin, S., Hardy, M., Clews, J., Cormier, J., Feng, Q., Marcin, J., O’Brien, C., Suzuki, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 870–879. [Google Scholar] [CrossRef]
- Klein, L.; Shen, Y.; Killian, M.S.; Virtanen, S. Effect of B and Cr on the high temperature oxidation behaviour of novel γ/γ′-strengthened Co-base superalloys. Corros. Sci. 2011, 53, 2713–2720. [Google Scholar] [CrossRef]
- Silva Salgado, M.V.; Chaia, N.; Rezende Silva, A.L.C.; Freitas, B.X.; Costa, A.M.S.; Coelho, G.C.; Nunes, C.A. High-temperature oxidation behavior of high-aluminum (Co,Ni)-based superalloys for friction stir welding (FSW) tools. Oxid. Met. 2021, 95, 203–220. [Google Scholar] [CrossRef]
- Yan, H.Y.; Vorontsov, V.A.; Dye, D. Effect of alloying on the oxidation behaviour of Co–Al–W superalloys. Corros. Sci. 2014, 83, 382–395. [Google Scholar] [CrossRef]
- Chen, Y.H.; Xue, F.; Wang, C.H.; Li, X.Q.; Deng, Q.S.; Yang, X.M.; Long, H.B.; Li, W.; Yang, L.Y.; Li, A. Effect of Cr on the microstructure and oxidation properties of Co-Al-W superalloys studied by in situ environmental TEM. Corros. Sci. 2019, 161, 108179. [Google Scholar] [CrossRef]
- Weiser, M.; Chater, R.J.; Shollock, B.A.; Virtanen, S. Transport mechanisms during the high-temperature oxidation of ternary γ/γ′ Co-base model alloys. NPJ Mat. Degrad. 2019, 3, 33. [Google Scholar] [CrossRef]
- Das, S.M.; Singh, M.P.; Chattopadhyay, K. Effect of Cr addition on the evolution of protective alumina scales and the oxidation properties of a Ta stabilized γ’-strengthened Co-Ni-Al-Mo-Ta-Ti alloy. Corros. Sci. 2020, 172, 108683. [Google Scholar] [CrossRef]
- Qu, S.S. Microstructural Stability and Properties of Novel Low-Density γʹ-Strengthened Co-Based Superalloys. Ph.D. Thesis, University of Science and Technology of China, Hefei, China, 2021. [Google Scholar]
- Park, H.; Li, C.; Jakus, A.E.; Shah, R.N.; Choe, H.; Dunand, D.C. High-temperature mechanical properties of γ/γ′ Co–Ni–W–Al superalloy microlattices. Scripta. Mater. 2020, 188, 146–150. [Google Scholar] [CrossRef]
- Klein, L.; Bauer, A.; Neumeier, S.; Göken, M.; Virtanen, S. High temperature oxidation of γ/γ′-strengthened Co-base superalloys. Corros. Sci. 2011, 53, 2027–2034. [Google Scholar] [CrossRef]
- Giggins, C.S.; Pettit, F.S. Oxidation of Ni-Cr-Al alloys between 1000° and 1200 °C. J. Electrochem. Soc. 1971, 118, 1782. [Google Scholar] [CrossRef]
- Wagner, C. Reaktionstypen bei der Oxydation von Legierungen, Zeitschrift für Elektrochemie. Ber. Bunsenges. Phys. Chem. 1959, 63, 772–782. [Google Scholar] [CrossRef]
- Weiser, M.; Galetz, M.C.; Zschau, H.E.; Zenk, C.H.; Neumeier, S.; Göken, M.; Virtanen, S. Influence of Co to Ni ratio in γ′-strengthened model alloys on oxidation resistance and the efficacy of the halogen effect at 900 °C. Corros. Sci. 2019, 156, 84–95. [Google Scholar] [CrossRef]
- Nowak, W.J.; Wierzba, P.; Wierzba, B.; Sieniawski, J. Oxide scale formation on in 792 at early stages of high temperature exposure. Adv. Manuf. Sci. Technol. 2017, 41, 65–74. [Google Scholar] [CrossRef]
- Gao, B.; Wang, L.; Liu, Y.; Song, X.; Yang, S.Y.; Chiba, A. High-temperature oxidation behaviour of γ′-strengthened Co-based superalloys with different Ni addition. Corros. Sci. 2019, 157, 109–115. [Google Scholar] [CrossRef]
- Petersen, A.; Müller-Buschbaum, H. Ein beitrag über oxide vom typ AMO4 (A = Ti3+, Cr3+; M = Nb5+, Ta5+). Z. Anorg. Allg. Chem. 1992, 609, 51–54. [Google Scholar] [CrossRef]
- Neumeier, S.; Rehman, H.U.; Neuner, J.; Zenk, C.H.; Michel, S.; Schuwalow, S.; Rogal, J.; Drautz, R.; Göken, M. Diffusion of solutes in fcc Cobalt investigated by diffusion couples and first principles kinetic Monte Carlo. Acta Mater. 2016, 106, 304–312. [Google Scholar] [CrossRef]
- Chorney, M.P.; Hurley, B.P.; Mondal, K.; Khanolkar, A.R.; Downey, J.P.; Tripathy, P.K. Transformation of a ceramic precursor to a biomedical (metallic) alloy: Part I–sinterability of Ta2O5 and TiO2 mixed oxides. Mater. Sci. Energy Technol. 2022, 5, 181–188. [Google Scholar] [CrossRef]
- Das, S.M.; Singh, M.P.; Chattopadhyay, K. Evolution of oxides and their microstructures at 800°C in a γ-γ′ stabilised Co-Ni-Al-Mo-Ta superalloy. Corros. Sci. 2019, 155, 46–54. [Google Scholar] [CrossRef]
- Gleeson, B. High-temperature corrosion of metallic alloys and coatings. In Materials Science and Technology: A Comprehensive Treatment: Corrosion and Environmental Degradation, Volumes I + II, I + II; Cahn, R.W., Haasen, P., Kramer, E.J., Eds.; WILEY-VCH Verlag GmbH: Weinheim, Germany, 2000; pp. 173–224. [Google Scholar] [CrossRef]
Alloy Designation | Nominal Composition | Measured Composition | Tγ’s (°C) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Co | Ni | Al | W | Ti | Cr | Ta | B | |||
1Cr | Co-30Ni-10Al-4W-4Ti-2Ta-1Cr | Bal. | 30.27 | 9.21 | 4.04 | 3.96 | 0.99 | 2.01 | 0.26 | 1213 |
3Cr | Co-30Ni-10Al-4W-4Ti-2Ta-3Cr | Bal. | 30.40 | 9.24 | 4.02 | 3.95 | 2.94 | 2.01 | 0.27 | 1202 |
5Cr | Co-30Ni-10Al-4W-4Ti-2Ta-5Cr | Bal. | 30.54 | 9.35 | 4.02 | 3.97 | 4.96 | 2.02 | 0.24 | 1191 |
Alloy Designation | kp (mg2∙cm−4∙s−1) | n |
---|---|---|
0Cr | 1.03 × 10−4 | 2 |
1Cr | 2.66 × 10−6 | 2 |
3Cr | 5.12 × 10−6 | 2 |
5Cr | 8.58 × 10−6 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, K.; Qu, S.; Shu, L.; Xue, P.; Li, X.; Chen, B.; Liu, K. Effect of Chromium Content on the Oxidation Behavior of a Ta Stabilized γ’-Strengthened Polycrystalline Co-30Ni-10Al-4W-4Ti-2Ta Alloy. Materials 2022, 15, 5833. https://doi.org/10.3390/ma15175833
Qian K, Qu S, Shu L, Xue P, Li X, Chen B, Liu K. Effect of Chromium Content on the Oxidation Behavior of a Ta Stabilized γ’-Strengthened Polycrystalline Co-30Ni-10Al-4W-4Ti-2Ta Alloy. Materials. 2022; 15(17):5833. https://doi.org/10.3390/ma15175833
Chicago/Turabian StyleQian, Kun, Shasha Qu, Lei Shu, Peng Xue, Xiaobing Li, Bo Chen, and Kui Liu. 2022. "Effect of Chromium Content on the Oxidation Behavior of a Ta Stabilized γ’-Strengthened Polycrystalline Co-30Ni-10Al-4W-4Ti-2Ta Alloy" Materials 15, no. 17: 5833. https://doi.org/10.3390/ma15175833
APA StyleQian, K., Qu, S., Shu, L., Xue, P., Li, X., Chen, B., & Liu, K. (2022). Effect of Chromium Content on the Oxidation Behavior of a Ta Stabilized γ’-Strengthened Polycrystalline Co-30Ni-10Al-4W-4Ti-2Ta Alloy. Materials, 15(17), 5833. https://doi.org/10.3390/ma15175833