An Environmentally Friendly Inverse Microemulsion Method to Synthesize Polyacrylamide
Abstract
:1. Introduction
2. Experiment
2.1. Experimental Materials
2.2. Experimental Procedures
2.3. Determination of Conversion Degree
2.4. Determination of Intrinsic Viscosity
2.5. Determination of Apparent Viscosity
2.6. Calculation of HLB Value
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Peng, W.; Li, L.; Chen, S.; Ye, L.; Peng, C. Simple Synthesis of Copper/MXene/Polyacrylamide Hydrogel Catalyst for 4-nitrophenol Reduction. Mater. Lett. 2022, 324, 132705. [Google Scholar] [CrossRef]
- He, Z.; Yang, H.; Su, J.; Xia, Y.; Fu, X.; Kang, L.; Wang, L.; Wu, M. Polyacrylamide gel synthesis and photocatalytic performance of CuCo2O4 nanoparticles. Mater. Lett. 2021, 288, 129375. [Google Scholar] [CrossRef]
- Bilgehan, B.M.; Kerem, K.; Nermin, O.; Yusuf, Y. Light-Induced Synthesis and Characterization of “Clickable” Polyacrylamide Hydrogels. Eur. Polym. J. 2022, 167, 111062. [Google Scholar] [CrossRef]
- Tess, R.W.; Poehlein, G.W. Applied Polymer Science: Emulsion Polymerization; American Chemical Society: Washington, DC, USA, 1985. [Google Scholar]
- Aouay, M.; Magnin, A.; Putaux, J.-L.; Boufi, S. Crosslinkable dextrin-coated latex via surfactant-free emulsion polymerization. Colloids Surf. A Physicochem. Eng. Asp. 2021, 632, 127776. [Google Scholar] [CrossRef]
- Magdy, Z.; Ashraf, H.; Amr, A. Synthesis and characterization of polymerizable surfactants based on ethoxylate alcohol cinnamate for emulsion polymerization. J. Radiat. Res. Appl. Sci. 2022, 15, 59–66. [Google Scholar] [CrossRef]
- Li, H.; Xia, Y.; Wu, S.; Zhang, D.; Oliver, S.; Li, X.; Chen, X.; Lei, L.; Shi, S. Micron-dimensional sulfonated graphene sheets co-stabilized emulsion polymerization to prepare acrylic latex used for reinforced anticorrosion coatings. Prog. Org. Coat. 2022, 165, 106762. [Google Scholar] [CrossRef]
- Lin, Z.S.; Goddard, J.M. Photocurable coatings prepared by emulsion polymerization present chelating properties. Colloids Surf. B 2018, 172, 143–151. [Google Scholar] [CrossRef]
- Bellamine, A.; Degrandi, E.; Gerst, M.; Stark, R.; Beyers, C.; Creton, C. Design of nanostructured waterborne adhesives with improved shear resistance. Macromol. Mater. Eng. 2011, 296, 31–41. [Google Scholar] [CrossRef]
- Jovanović, R.; Dubé, M.A. Emulsion-based pressure-sensitive adhesives: A review. J. Macromol. Sci. Part C Polym. Rev. 2004, 44, 1–51. [Google Scholar] [CrossRef]
- Butler, L.N.; Fellows, C.M.; Gilbert, R.G. Effect of surfactants used for binder synthesis on the properties of latex paints. Prog. Org. Coat. 2005, 53, 112–118. [Google Scholar] [CrossRef]
- Solans, C.; Kunieda, H. (Eds.) Industrial applications of microemulsions. In Surfactant Science Series; Maecel Dekker: New York, NY, USA; Basel, Switzerland; Hong Kong, China, 1996. [Google Scholar]
- Plastinin, I.V.; Burikov, S.A.; Dolenko, T.A. Laser diagnostics of reverse microemulsions: Influence of the size and shape of reverse micelles on the Raman spectrum on the example of water/AOT/cyclohexane system. J. Mol. Liq. 2021, 325, 115153. [Google Scholar] [CrossRef]
- Wei, B.; Wang, L.; Wang, Y.; Yuan, Y.; Miao, Q.; Yang, Z.; Fei, W. In situ growth of manganese oxide on 3D graphene by a reverse microemulsion method for supercapacitors. J. Power Sources 2016, 307, 129–137. [Google Scholar] [CrossRef]
- Asua, J.M. Miniemulsion polymerization. Prog. Polym. Sci. 2002, 27, 1283–1346. [Google Scholar] [CrossRef]
- Asua, J.M. Challenges for industrialization of miniemulsion polymerization. Prog. Polym. Sci. 2014, 39, 1797–1826. [Google Scholar] [CrossRef]
- Landfester, K. Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew. Chem. Int. Ed. 2009, 48, 4488–4507. [Google Scholar] [CrossRef]
- Nauman, N.; Zaquen, N.; Junkers, T.; Boyer, C.; Zetterlund, P.B. Particle size control in miniemulsion polymerization via membrane emulsification. Macromolecules 2019, 52, 4492–4499. [Google Scholar] [CrossRef]
- Xu, X.L.; Ge, X.W.; Zhang, Z.C.; Zhang, M.W. Copolymerization of styrene with acrylates in emulsion and microemulsion. Polymer 1998, 39, 5321–5325. [Google Scholar] [CrossRef]
- Capek, I. Microemulsion polymerization of styrene in the presence of anionic emulsifier. Adv. Colloid Interface Sci. 1999, 82, 253–273. [Google Scholar] [CrossRef]
- Shi, Y.C.; Wu, Y.S.; Hao, J.C.; Li, G.Z. Kinetics of microemulsion copolymerization of styrene and acrylonitrile in the presence of cosurfactant. Colloid. Surf. A 2005, 262, 191–197. [Google Scholar] [CrossRef]
- Ming, W.; Jones, F.N.; Fu, S.K. Synthesis of nanosize poly(methyl methacrylate) microlatexes with high polymer content by a modified microemulsion polymerization. Polym. Bull. 1998, 40, 749–756. [Google Scholar] [CrossRef]
- Pavel, F.M. Microemulsion polymerization. J. Disp. Sci. Technol. 2004, 25, 1. [Google Scholar] [CrossRef]
- O’Donnell, J.; Kaler, E.W. Microstructure, Kinetics, and Transport in Oil-in-Water Microemulsion Polymerizations. Macromol. Rapid Commun. 2007, 28, 1445. [Google Scholar] [CrossRef]
- Antonietti, M.; Bremser, W.; Schmidt, M. Microgels: Model polymers for the crosslinked state. Macromolecules 1990, 23, 3796–3805. [Google Scholar] [CrossRef]
- Neyret, S.; Vincent, B. The properties of polyampholyte microgel particles prepared by microemulsion polymerization. Polymer 1997, 38, 6129–6134. [Google Scholar] [CrossRef]
- He, G.; Pan, Q.; Rempe, G.L. Synthesis of Poly(methyl methacrylate) Nanosize Particles by Differential Microemulsion Polymerization. Communication 2003, 24, 585–588. [Google Scholar] [CrossRef]
- Al-Sabagh, A.M.; Kandile, N.G.; El-Ghazawy, R.A.; Noor El-Din, M.R.; El-sharaky, E.A. Synthesis and characterization of high molecular weight hydrophobically modified polyacrylamide nanolatexes using novel nonionic polymerizable surfactants. Egypt. J. Pet. 2013, 22, 531–538. [Google Scholar] [CrossRef]
- Wang, H.; Chan, E.; Bregu, S.; Rempel, G.L. Preparation of poly(styrene-cobutadiene) fine latex via a gemini surfactant-induced low-temperature initiation semibatch emulsion polymerization system. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 1669–1678. [Google Scholar] [CrossRef]
- Rahdar, A.; Almasi-Kashi, M.; Mohamed, N. Light scattering and optic studies of Rhodamine B-comprising cylindrical-like AOT reversed micelles. J. Mol. Liq. 2016, 223, 1264–1269. [Google Scholar] [CrossRef]
- Rahdar, A.; Almasi-Kashi, M. Photophysics of Rhodamine B in the nanosized water droplets: A concentration dependence study. J. Mol. Liq. 2016, 220, 395–403. [Google Scholar] [CrossRef]
- Sun, X.; Bandara, N. Applications of reverse micelles technique in food science: A comprehensive review. Trends Food Sci. Technol. 2019, 91, 106–115. [Google Scholar] [CrossRef]
- Klossek, M.L.; Marcus, J.; Touraud, D.; Kunz, W. The extension of microemulsion regions by combining ethanol with other cosurfactants. Colloids Surf. A Physicochem. Eng. Asp. 2013, 427, 95–100. [Google Scholar] [CrossRef]
- Sahle, F.F.; Metz, H.; Wohlrab, J.; Neubert, R.H.H. Polyglycerol fatty acid ester surfactant–based microemulsions for targeted delivery of ceramide AP into the stratum corneum: Formulation, characterisation, in vitro release and penetration investigation. Eur. J. Pharm. Biopharm. 2012, 82, 139–150. [Google Scholar] [CrossRef] [PubMed]
Sample | Electrical Conductivity (µs/cm) | 7d | Sample | Electrical Conductivity (µs/cm) | 7d | Sample | Electrical Conductivity (µs/cm) | 7d |
---|---|---|---|---|---|---|---|---|
Initiator (0.3%) | 0.021 | Translucent Unstable | NaAc 1% | 0.01 | Translucent Unstable | Temperature 40 °C | 0.009 | Translucent Unstable |
Initiator (0.4%) | 0.023 | Translucent Kinetically Stable | NaAc 2% | 0.01 | Translucent Unstable | Temperature 45 °C | 0.069 | Translucent Kinetically Stable |
Initiator (0.5%) | 0.024 | Translucent Kinetically Stable | NaAc 3% | 0.055 | Translucent Kinetically Stable | Temperature 50 °C | 0.011 | Translucent Unstable |
Initiator (0.6%) | 0.029 | Translucent Unstable | NaAc 4% | 0.078 | Translucent Kinetically Stable | - | - | - |
Initiator (0.7%) | 0.03 | Translucent Unstable | NaAc 5% | 0.0107 | Translucent Unstable | - | - | - |
Sample | Electrical Conductivity (µs/cm) | 7d | Sample | Electrical Conductivity (µs/cm) | 7d | Sample | Electrical Conductivity (µs/cm) | 7d |
HLB 8.36 | 0.021 | Translucent Unstable | Water phase content 50% | 0.017 | Translucent Unstable | Liquid paraffin | 0 | Transparent Stable |
HLB 8.05 | 0.023 | Translucent Kinetically Stable | Water phase content 55% | 0.025 | Translucent Kinetically Stable | - | - | - |
HLB 7.72 | 0.024 | Translucent Unstable | Water phase content 60% | 0.031 | Translucent Kinetically Stable | - | - | - |
HLB 7.30 | 0.029 | Translucent Unstable | Water phase content 65% | 0.047 | Translucent Unstable | - | - | - |
- | - | - | Water phase content 70% | 0.014 | Translucent Unstable | - | - | - |
- | - | - | Water phase content 75% | 0.01 | Translucent Unstable | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Yin, L.; Wang, X.; Yuan, J.; Zhang, Q. An Environmentally Friendly Inverse Microemulsion Method to Synthesize Polyacrylamide. Materials 2022, 15, 5927. https://doi.org/10.3390/ma15175927
Guo Q, Yin L, Wang X, Yuan J, Zhang Q. An Environmentally Friendly Inverse Microemulsion Method to Synthesize Polyacrylamide. Materials. 2022; 15(17):5927. https://doi.org/10.3390/ma15175927
Chicago/Turabian StyleGuo, Qing, Longlong Yin, Xiao Wang, Jing Yuan, and Qianfeng Zhang. 2022. "An Environmentally Friendly Inverse Microemulsion Method to Synthesize Polyacrylamide" Materials 15, no. 17: 5927. https://doi.org/10.3390/ma15175927
APA StyleGuo, Q., Yin, L., Wang, X., Yuan, J., & Zhang, Q. (2022). An Environmentally Friendly Inverse Microemulsion Method to Synthesize Polyacrylamide. Materials, 15(17), 5927. https://doi.org/10.3390/ma15175927