First-Principles Study on the Stability, Site Preference, Electronic Structure and Magnetism of Alloyed Fe3B with Ni3P-Type Structure
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Geometry Optimization
3.2. Thermodynamic Stability and Site Preference of Alloying Elements
3.3. Electronic and Magnetic Properties
Type of Bond | Fe-B | Fe-Fe | B-B | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Fe1-B | Fe2-B | Fe3-B | Fe1-Fe1 | Fe2-Fe2 | Fe3-Fe3 | Fe1-Fe2 | Fe1-Fe3 | Fe2-Fe3 | B-B | |
Bond length (Å) | 2.16 | 2.15 2.16 2.18 | 2.12 | 2.27 2.62 2.67 | 2.43 2.72 | 2.43 | 2.61 | 2.42 2.49 2.51 2.67 | 2.45 2.80 | - |
4. Conclusions
- (1)
- Negative formation enthalpy and cohesive energy suggest that all studied compounds are thermodynamically stable, while Cu, W and Nb do not easily enter the Fe3B lattice. The lowest formation enthalpy implies that the (Fe2.875,Mo0.125)B can be produced more easily, whereas the lowest cohesive energy means that the (Fe2.875,W0.125)B is the most stable compound.
- (2)
- Mn preferentially resides in the Fe2 site, whereas the others are more likely to occupy the Fe1 site. The Fe3 site is the second most popular site for most alloying elements.
- (3)
- The DOSs of both Fe3B and alloyed Fe3B are dominated by Fe-d states, and the plots of charge density indicate that all the compounds mainly consist of Fe-B covalent bond, Fe-Fe covalent bond and Fe-Fe metallic bond.
- (4)
- The Fe3B, (Fe2.875,Mn0.125)B, (Fe2.875,Co0.125)B, (Fe2.875,Ni0.125)B and (Fe2.875,Cu0.125)B are ferromagnetic compounds, whereas the others are ferrimagnetic compounds since the Ms values of Ti, V, Cr, Mo, W and Nb elements are negative. Although both Mn and Co can increase the magnetic moments of Fe3B, and although the maximum Ms values of (Fe2.875,Co0.125)B are slightly larger than those of (Fe2.875,Mn0.125)B, considering the cost of production, Mn is the more favorable candidate for improving the magnetic properties of Fe3B.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutfleisch, O.; Willard, M.A.; Brück, E.; Chen, C.H.; Sankar, S.G.; Liu, J.P. Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 2010, 23, 821–842. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.-N.; Li, Y.; Han, X.-H.; Liu, S.; Sun, J.-B. Multiphase microstructure and magnetic properties of high performance Nd-Fe-B ribbons with multielement addition. J. Magn. Magn. Mater. 2018, 474, 90–97. [Google Scholar] [CrossRef]
- Coehoorn, R.; de Mooij, D.; de Waard, C. Meltspun permanent magnet materials containing Fe3B as the main phase. J. Magn. Magn. Mater. 1989, 80, 101–104. [Google Scholar] [CrossRef]
- You, C.; Ping, D.; Hono, K. Magnetic properties and microstructure of Fe3B/Pr2Fe14B-type nanocomposite magnets with Co and Cr additions. J. Magn. Magn. Mater. 2006, 299, 136–144. [Google Scholar] [CrossRef]
- Tao, S.; Ahmad, Z.; Zhang, P.; Zheng, X.; Zhang, S. Magnetic and structural properties of rapidly solidified Nd3Pr3Fe67Co3Nb3Ti1B20 nanomagnet. J. Magn. Magn. Mater. 2021, 533, 167998. [Google Scholar] [CrossRef]
- Yu, H.; Li, J.; Li, J.; Chen, X.; Han, G.; Yang, J.; Chen, R. Enhancing the properties of FeSiBCr amorphous soft magnetic composites by annealing treatments. Metals 2022, 12, 828. [Google Scholar] [CrossRef]
- Avettand-Fènoël, M.-N.; Sauvage, X.; Marinova, M.; Addad, A. Multiscale investigation of the crystallization mechanisms and solute redistribution during annealing of a Fe64B24Y4Nb6Al0.4 metallic glass. J. Alloys Compd. 2021, 887, 161264. [Google Scholar] [CrossRef]
- Zhu, M.; Fa, Y.; Yao, L.J.; Tao, P.; Jian, Z.Y.; Chang, F.E. The influence of annealing on the structural and soft magnetic peoperties of (Fe0.4Co0.6)79Nb3B18 nanocrystalline alloys. Materials 2018, 11, 2171. [Google Scholar] [CrossRef]
- Liu, Z.W.; Yu, D.B.; Li, K.S.; Luo, Y.; Yuan, C.; Wang, Z.L.; Sun, L.; Men, K. Effect of Y addition on crystallization behavior and soft-magnetic properties of Fe78Si9B13 ribbons. J. Magn. Magn. Mater. 2017, 436, 17–20. [Google Scholar]
- Uehara, M.; Hirosawa, S.; Kanekiyo, H.; Sano, N.; Tomida, T. Effect of Cr-doping on crystallization sequence and magnetic properties of Fe3B/Nd2Fe14B nanocomposite permanent magnets. Nanostruct. Mater. 1998, 10, 151–160. [Google Scholar] [CrossRef]
- Yang, C.J.; Park, E.B.; Hwang, Y.S.; Kim, E.C. The effect of Co on the enhanced magnetic properties of Fe3B/Nd2Fe14B magnets. J. Magn. Magn. Mater. 2000, 212, 168–174. [Google Scholar] [CrossRef]
- Rajasekhar, M.; Akhtar, D.; Raja, M.M.; Ram, S. Effect of Mn on the magnetic properties of Fe3B/Nd2Fe14B nanocomposites. J. Magn. Magn. Mater. 2008, 320, 1645–1650. [Google Scholar] [CrossRef]
- Xiong, X.Y.; Hono, K.; Hirosawa, S.; Kanekiyo, H. Effects of V and Si additions on the coercivity and microstructure of nanocomposite Fe3B/Nd2Fe14B magnets. J. Appl. Phys. 2002, 91, 9308–9314. [Google Scholar] [CrossRef]
- Novakova, A.A.; Sidorova, G.V.; Kiseleva, T.Y.; Szasz, A. Crystallization study of amorphous system Fe84−xWxB16 (x = 3; 5). Hyperfine Interact. 1992, 73, 309–312. [Google Scholar] [CrossRef]
- Liu, X.D.; Wang, J.T.; Ding, B.Z. Influence of Mo addition on the intrinsic magnetic properties and crystallization behavior of FeSiB glass. J. Mater. Sci. Lett. 1993, 12, 1108–1110. [Google Scholar] [CrossRef]
- Pal, S.K.; Diop, L.; Skokov, K.; Gutfleisch, O. Magnetic properties of Mo-stabilized bulk Fe3B magnet. Scr. Mater. 2016, 130, 234–237. [Google Scholar] [CrossRef]
- Ping, D.H.; Hono, K.; Kanekiyo, H.; Hirosawa, S. Mechanism of grain size refinement of Fe3B/Nd2Fe14B nanocomposite permanent magnet by Cu addition. J. Appl. Phys. 1999, 85, 2448–2450. [Google Scholar] [CrossRef]
- Hawelek, L.; Warski, T.; Radon, A.; Pilsniak, A.; Maziarz, W.; Szlezynger, M.; Kadziolka-Gawel, M.; Kolano-Burian, A. Structure and magnetic properties of thermodynamically predicted rapidly quenched Fe85-xCuxB15 alloys. Materials 2021, 14, 7807. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, A.; Li, J.; He, A.; Liu, T.; Dong, Y.; Guo, H.; Liu, X. Structural evolutionary process and interrelation for FeSiBNbCuMo nanocrystalline alloy. J. Alloys Compd. 2019, 821, 153487. [Google Scholar] [CrossRef]
- Karolus, M.; Kwapuliński, P.; Chrobak, D.; Haneczok, G.; Chrobal, A. Crystallization in Fe76X2B22 (X = Cr, Zr, Nb) amorphous alloys. J. Mater. Process. Tech. 2005, 162, 203–208. [Google Scholar] [CrossRef]
- Derewnicka-Krawczyńska, D.; Ferrari, S.; Bilovol, V.; Pagnola, M.; Morawiec, K.; Saccone, F. Influence of Nb, Mo, and Ti as doping metals on structure and magnetic response in NdFeB based melt spun ribbons. J. Magn. Magn. Mater. 2018, 462, 83–95. [Google Scholar] [CrossRef]
- Hirosawa, S.; Kanekiyo, H.; Shigemoto, Y.; Murakami, K.; Miyoshi, T.; Shioya, Y. Solidification and crystallization behaviors of Fe3B/Nd2Fe14B-based nanocomposite permanent-magnet alloys and influence of micro-alloyed Cu, Nb and Zr. J. Magn. Magn. Mater. 2002, 239, 424–429. [Google Scholar] [CrossRef]
- Pokatilov, V.S.; Sigov, A.A.S.; Makarova, A.O.; Pokatilov, V.V.; Pevtsov, E.F. Study of Fe85-xCrxB15(x = 0-20) amorphous alloys by the 11B nuclear magnetic resonance method. Dokl. Phys. 2019, 64, 45–48. [Google Scholar] [CrossRef]
- Pokatilov, V.S.; Dmitrieva, T.G.; Pokatilov, V.V.; D’yakonova, N.B. Local atomic and magnetic structures of nanocrystalline Fe75Cr10B15 alloy. Phys. Solid. State. 2012, 54, 1790–1795. [Google Scholar] [CrossRef]
- Hirosawa, S.; Shigemoto, Y.; Miyoshi, T.; Kanekiyo, H. Direct formation of Fe3B/Nd2Fe14B nanocomposite permanent magnets in rapid solidification. Scr. Mater. 2003, 48, 839–844. [Google Scholar] [CrossRef]
- Jung, Y.-C.; Nakai, K. Effects of Cr on the early crystallization stages of Nd4.5Fe77−xCrxB18.5 amorphous ribbons. Met. Mater. Int. 2003, 9, 337–344. [Google Scholar] [CrossRef]
- Jianu, A.; Valeanu, M.; Lazar, D.P.; Lifei, F.; Bunescu, C.; Pop, V. Effects of Zr and Ti substitutions on the crystallization processes of Fe3B/Nd2Fe14B nanocomposite magnetic system. J. Magn. Magn. Mater. 2004, 272, 1493–1494. [Google Scholar] [CrossRef]
- Li, L.H.; Wang, W.L.; Hu, L.; Wei, B.B. First-principle calculations of structural, elastic and thermodynamic properties of Fe-B compounds. Intermetallics 2014, 46, 211–221. [Google Scholar] [CrossRef]
- Kong, Y.; Li, F. Cohesive energy, local magnetic properties, and Curie temperature of Fe3B studied using the self-consistent LMTO method. Phys. Rev. B 1997, 56, 3153–3158. [Google Scholar] [CrossRef]
- Gueddouh, A.; Bentria, B.; Lefkaier, I.K. First-principle investigations of structure, elastic and bond hardness of FexB (x = 1,2,3) under pressure. J. Magn. Magn. Mater. 2016, 406, 192–199. [Google Scholar] [CrossRef]
- Ching, W.Y.; Xu, Y.N.; Harmon, B.N.; Ye, J.; Leung, T.C. Electronic structures of FeB, Fe2B, and Fe3B compounds studied using first-principles spin-polarized calculations. Phys. Rev. B 1990, 42, 4460–4470. [Google Scholar] [CrossRef] [PubMed]
- Shein, I.R.; Medvedeva, N.I.; Ivanovskii, A.L. Electronic and structural properties of cementite-type M3X (M = Fe, Co, Ni; X = C or B) by first principles calculations. Phys. B 2006, 371, 126–132. [Google Scholar] [CrossRef]
- Lv, Z.Q.; Fu, W.T.; Sun, S.H.; Wang, Z.H.; Fan, W.; Qv, M.G. Structural, electronic and magnetic properties of cementite-type Fe3X (X = B, C, N) by first-principles calculations. Solid. State. Sci. 2010, 12, 404–408. [Google Scholar] [CrossRef]
- Hui, L.; Xie, Z.; Li, C.; Chen, Z.-Q. Fe-X (X = B, N) binary compounds: First-principles calculations of electronic structures, theoretic hardness and magnetic properties. J. Magn. Magn. Mater. 2018, 451, 761–769. [Google Scholar] [CrossRef]
- Suslov, A.A.; Lad’Yanov, V.I. Effect of the liquid phase on the formation of orthorhombic boride during the crystallization of Fe82B18 amorphous ribbons. Russ. Met 2016, 2016, 1021–1026. [Google Scholar] [CrossRef]
- Abrosimova, G.E.; Aronin, A.S. Formation of Metastable Phases during Crystallization of Amorphous Iron-Based Alloys. Crystallogr. Rep. 2020, 65, 573–576. [Google Scholar] [CrossRef]
- Gu, B.; Shen, B.; Zhai, R. Influence of substitution of Cr for Fe on magnetic properties of Nd4Fe77.5B18.5 alloys. J. Magn. Magn. Mater. 1993, 124, 85–88. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 59, 11169–11186. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B Condens. Matter Mater. Phys. 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Wang, W.-K.; Iwasaki, H.; Fukamichi, K. Effect of high pressure on the crystallization of an amorphous Fe83B17 alloy. J. Mater. Sci. 1980, 15, 2701–2708. [Google Scholar] [CrossRef]
- Walter, J.L.; Bartram, S.F.; Russell, R.R. Crystallization of the amorphous alloys Fe50Ni30B20 and Fe80B20. Met. Mater. Trans. A 1978, 9, 803–814. [Google Scholar] [CrossRef]
- Wei, X.; Chen, Z.G.; Zhong, J.; Wang, L.; Hou, Z.W.; Zhang, Y.; Tan, F.L. Facile preparation of nanocrystalline Fe2B coating by direct electrosaprk deposition of coarse-grained Fe2B electrode material. J. Alloys Compd. 2017, 717, 31–40. [Google Scholar] [CrossRef]
- Kolmogorov, A.N.; Shah, S.; Margine, E.R.; Bialon, A.F.; Hammerschmidt, T.; Drautz, R. New superconducting and semiconducting Fe-B compounds predicted with an ab initio evolutionary search. Phys. Rev. Lett. 2010, 105, 217003. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Chen, Z.; Zhong, J.; Wang, L.; Yang, W.; Wang, Y. Effect of alloying elements on mechanical, electronic and magnetic properties of Fe2B by first-principles investigations. Comput. Mater. Sci. 2018, 147, 322–330. [Google Scholar] [CrossRef]
Model | Cell Parameters | ||||||
---|---|---|---|---|---|---|---|
a (Å) | b (Å) | c (Å) | α (°) | β (°) | γ (°) | Volume (Å3) | |
Fe3B in this work | 8.5538 | 8.5538 | 4.2106 | 90.0000 | 90.0000 | 90.0000 | 308.0780 |
Exp. in Ref. [35] | 8.6470 | 8.6470 | 4.2820 | 90.0000 | 90.0000 | 90.0000 | 320.1677 |
Exp. in Ref. [37] | 8.6300 | 8.6300 | 4.2900 | 90.0000 | 90.0000 | 90.0000 | 319.5059 |
Cal. in Ref. [24] | 8.5510 | 8.5510 | 4.2400 | 90.0000 | 90.0000 | 90.0000 | 310.0271 |
Fe1 Site | |||||||
(Fe2.875,Ti0.125)B | 8.5858 | 8.5860 | 4.2227 | 89.9012 | 89.9010 | 90.2751 | 311.2846 |
(Fe2.875,V0.125)B | 8.5687 | 8.5689 | 4.2076 | 89.9141 | 89.9139 | 90.1963 | 308.9377 |
(Fe2.875,Cr0.125)B | 8.5639 | 8.5641 | 4.1976 | 89.9331 | 89.9330 | 90.0826 | 307.8600 |
(Fe2.875,Mn0.125)B | 8.5489 | 8.5489 | 4.2068 | 89.9763 | 89.9765 | 90.0448 | 307.4465 |
(Fe2.875,Co0.125)B | 8.5580 | 8.5581 | 4.2049 | 90.0047 | 90.0044 | 89.9087 | 307.9688 |
(Fe2.875,Ni0.125)B | 8.5648 | 8.5650 | 4.2029 | 90.0067 | 90.0058 | 89.8050 | 308.3100 |
(Fe2.875,Cu0.125)B | 8.5755 | 8.5759 | 4.2072 | 89.9691 | 89.9684 | 89.8815 | 309.4071 |
(Fe2.875,Mo0.125)B | 8.5991 | 8.5993 | 4.2237 | 89.9771 | 89.9764 | 90.0708 | 312.3262 |
(Fe2.875,W0.125)B | 8.6001 | 8.6012 | 4.2255 | 89.9583 | 89.9576 | 90.0044 | 312.5921 |
(Fe2.875,Nb0.125)B | 8.6182 | 8.6184 | 4.2370 | 89.9576 | 89.9572 | 90.2028 | 314.7009 |
Fe2 Site | |||||||
(Fe2.875,Ti0.125)B | 8.5702 | 8.5750 | 4.2465 | 89.9251 | 90.0008 | 90.0011 | 312.0747 |
(Fe2.875,V0.125)B | 8.5409 | 8.5763 | 4.2232 | 90.0730 | 90.0005 | 90.0000 | 309.3454 |
(Fe2.875,Cr0.125)B | 8.5430 | 8.5635 | 4.2115 | 90.1504 | 90.0000 | 89.9997 | 308.1045 |
(Fe2.875,Mn0.125)B | 8.5622 | 8.5526 | 4.2161 | 89.9576 | 89.9999 | 89.9998 | 308.7394 |
(Fe2.875,Co0.125)B | 8.5592 | 8.5465 | 4.2089 | 90.0519 | 89.9999 | 90.0000 | 307.8827 |
(Fe2.875,Ni0.125)B | 8.5645 | 8.5489 | 4.2114 | 90.1249 | 90.0000 | 89.9996 | 308.3460 |
(Fe2.875,Cu0.125)B | 8.5650 | 8.5594 | 4.2206 | 90.1357 | 90.0001 | 89.9995 | 309.4180 |
(Fe2.875,Mo0.125)B | 8.6100 | 8.5792 | 4.2427 | 90.2233 | 90.0010 | 90.0003 | 313.3920 |
(Fe2.875,W0.125)B | 8.6098 | 8.5804 | 4.2446 | 90.2497 | 90.0010 | 90.0001 | 313.5696 |
(Fe2.875,Nb0.125)B | 8.6271 | 8.5901 | 4.2643 | 90.0921 | 90.0015 | 90.0013 | 316.0192 |
Fe3 Site | |||||||
(Fe2.875,Ti0.125)B | 8.5878 | 8.5879 | 4.2215 | 89.8791 | 89.8789 | 90.1831 | 311.3383 |
(Fe2.875,V0.125)B | 8.5659 | 8.5660 | 4.2101 | 89.8952 | 89.8955 | 90.1594 | 308.9142 |
(Fe2.875,Cr0.125)B | 8.5527 | 8.5528 | 4.2098 | 89.9875 | 89.9880 | 90.1606 | 307.9398 |
(Fe2.875,Mn0.125)B | 8.5533 | 8.5533 | 4.2069 | 89.9555 | 89.9556 | 90.0387 | 307.7746 |
(Fe2.875,Co0.125)B | 8.5464 | 8.5466 | 4.2171 | 90.0956 | 90.0958 | 89.9987 | 308.0246 |
(Fe2.875,Ni0.125)B | 8.5422 | 8.5423 | 4.2239 | 90.0536 | 90.0527 | 89.9958 | 308.2164 |
(Fe2.875,Cu0.125)B | 8.5509 | 8.5509 | 4.2264 | 90.0174 | 90.0159 | 90.0734 | 309.0206 |
(Fe2.875,Mo0.125)B | 8.5952 | 8.5955 | 4.2318 | 89.9133 | 89.9140 | 90.1358 | 312.6414 |
(Fe2.875,W0.125)B | 8.5968 | 8.5971 | 4.2331 | 89.8960 | 89.8963 | 90.1204 | 312.8589 |
(Fe2.875,Nb0.125)B | 8.6245 | 8.6247 | 4.2337 | 89.9020 | 89.9018 | 90.1331 | 314.9125 |
Model | Magnetic Moments in μB | ||||
---|---|---|---|---|---|
Fe | B | M | Interstice | Unit Cell | |
This work | 1.921 | −0.157 | - | −0.123 | 44.719 |
Cal. in Ref. [24] | 2.02 | - | - | - | - |
Cal. in Ref. [25] | 1.99 | - | - | - | - |
Fe1 Site | |||||
(Fe2.875,Ti0.125)B | 1.855 | −0.148 | −0.564 | −0.212 | 40.701 |
(Fe2.875,V0.125)B | 1.873 | −0.144 | −0.853 | −0.184 | 40.901 |
(Fe2.875,Cr0.125)B | 1.899 | −0.141 | −1.262 | −0.121 | 41.163 |
(Fe2.875,Mn0.125)B | 1.894 | −0.151 | 1.221 | −0.097 | 43.472 |
(Fe2.875,Co0.125)B | 1.953 | −0.154 | 1.319 | −0.123 | 44.877 |
(Fe2.875,Ni0.125)B | 1.971 | −0.152 | 0.571 | −0.145 | 44.554 |
(Fe2.875,Cu0.125)B | 1.965 | −0.151 | 0.129 | −0.149 | 43.971 |
(Fe2.875,Mo0.125)B | 1.884 | −0.143 | −0.461 | −0.130 | 41.595 |
(Fe2.875,W0.125)B | 1.878 | −0.142 | −0.397 | −0.159 | 41.510 |
(Fe2.875,Nb0.125)B | 1.873 | −0.146 | −0.520 | −0.161 | 41.242 |
Fe2 Site | |||||
(Fe2.875,Ti0.125)B | 1.880 | −0.145 | −0.477 | −0.193 | 41.413 |
(Fe2.875,V0.125)B | 1.874 | −0.138 | −0.693 | −0.171 | 41.135 |
(Fe2.875,Cr0.125)B | 1.898 | −0.136 | −0.922 | −0.107 | 41.537 |
(Fe2.875,Mn0.125)B | 1.938 | −0.157 | 1.746 | −0.109 | 44.948 |
(Fe2.875,Co0.125)B | 1.956 | −0.153 | 1.065 | −0.106 | 44.726 |
(Fe2.875,Ni0.125)B | 1.974 | −0.150 | 0.420 | −0.125 | 44.484 |
(Fe2.875,Cu0.125)B | 1.964 | −0.151 | 0.069 | −0.126 | 43.914 |
(Fe2.875,Mo0.125)B | 1.904 | −0.139 | −0.309 | −0.135 | 42.247 |
(Fe2.875,W0.125)B | 1.898 | −0.136 | −0.271 | −0.154 | 42.147 |
(Fe2.875,Nb0.125)B | 1.905 | −0.142 | −0.382 | −0.158 | 42.145 |
Fe3 Site | |||||
(Fe2.875,Ti0.125)B | 1.863 | −0.146 | −0.530 | −0.194 | 40.946 |
(Fe2.875,V0.125)B | 1.871 | −0.142 | −0.773 | −0.163 | 40.957 |
(Fe2.875,Cr0.125)B | 1.897 | −0.140 | −1.090 | −0.116 | 41.310 |
(Fe2.875,Mn0.125)B | 1.895 | −0.152 | 1.371 | −0.105 | 43.644 |
(Fe2.875,Co0.125)B | 1.961 | −0.156 | 1.268 | −0.128 | 44.996 |
(Fe2.875,Ni0.125)B | 1.970 | −0.155 | 0.508 | −0.164 | 44.405 |
(Fe2.875,Cu0.125)B | 1.950 | −0.156 | 0.097 | −0.167 | 43.542 |
(Fe2.875,Mo0.125)B | 1.887 | −0.141 | −0.391 | −0.123 | 41.752 |
(Fe2.875,W0.125)B | 1.878 | −0.140 | −0.354 | −0.149 | 41.570 |
(Fe2.875,Nb0.125)B | 1.872 | −0.144 | −0.48 | −0.149 | 41.272 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Chen, Z.; Kong, L.; Wu, J.; Zhang, H. First-Principles Study on the Stability, Site Preference, Electronic Structure and Magnetism of Alloyed Fe3B with Ni3P-Type Structure. Materials 2022, 15, 5990. https://doi.org/10.3390/ma15175990
Wei X, Chen Z, Kong L, Wu J, Zhang H. First-Principles Study on the Stability, Site Preference, Electronic Structure and Magnetism of Alloyed Fe3B with Ni3P-Type Structure. Materials. 2022; 15(17):5990. https://doi.org/10.3390/ma15175990
Chicago/Turabian StyleWei, Xiang, Zhiguo Chen, Lingnan Kong, Jiwen Wu, and Haichou Zhang. 2022. "First-Principles Study on the Stability, Site Preference, Electronic Structure and Magnetism of Alloyed Fe3B with Ni3P-Type Structure" Materials 15, no. 17: 5990. https://doi.org/10.3390/ma15175990
APA StyleWei, X., Chen, Z., Kong, L., Wu, J., & Zhang, H. (2022). First-Principles Study on the Stability, Site Preference, Electronic Structure and Magnetism of Alloyed Fe3B with Ni3P-Type Structure. Materials, 15(17), 5990. https://doi.org/10.3390/ma15175990