Effect of Curing Temperature on the Properties of a MgO-SiO2-H2O System Prepared Using Dead-Burned MgO
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussions
3.1. Crystal Structure of MgO
3.2. Compressive Strength and pH Value of M-S-H Made by MgO
3.3. XRD
3.4. DSC and DTG
3.5. FTIR Spectra
3.6. 29Si MAS NMR Spectra
3.7. SEM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Weerdt, K.; Justnes, H. The effect of sea water on the phase assemblage of hydrated cement paste. Cem. Concr. Compos. 2015, 55, 215–222. [Google Scholar] [CrossRef]
- Cole, W. A crystalline hydrated magnesium silicate formed in the breakdown of a concrete sea-wall. Nature 1953, 171, 354–355. [Google Scholar] [CrossRef]
- Calvo, J.G.; Hidalgo, A.; Alonso, C.; Luco, L.F. Development of low-pH cementitious materials for HLRW repositories: Resistance against ground waters aggression. Cem. Concr. Res. 2010, 40, 1290–1297. [Google Scholar] [CrossRef]
- Dauzères, A.; Le Bescop, P.; Cau-Dit-Coumes, C.; Brunet, F.; Bourbon, X.; Timonen, J.; Voutilainen, M.; Chomat, L.; Sardini, P. On the physico-chemical evolution of low-pH and CEM I cement pastes interacting with Callovo-Oxfordian pore water under its in situ CO2 partial pressure. Cem. Concr. Res. 2014, 58, 76–88. [Google Scholar] [CrossRef]
- Bonen, D. Composition and appearance of magnesium silicate hydrate and its relation to deterioration of cement-based materials. J. Am. Ceram. Soc. 1992, 75, 2904–2906. [Google Scholar] [CrossRef]
- Tran, H.; Scott, A. Strength and workability of magnesium silicate hydrate binder systems. Constr. Build. Mater. 2017, 131, 526–535. [Google Scholar] [CrossRef]
- Jin, F.; Al-Tabbaa, A. Thermogravimetric study on the hydration of reactive magnesia and silica mixture at room temperature. Thermochim. Acta 2013, 566, 162–168. [Google Scholar] [CrossRef]
- Jin, F.; Al-Tabbaa, A. Strength and hydration products of reactive MgO–silica pastes. Cem. Concr. Compos. 2014, 52, 27–33. [Google Scholar] [CrossRef]
- Zhang, T.; Cheeseman, C.; Vandeperre, L. Development of low pH cement systems forming magnesium silicate hydrate (MSH). Cem. Concr. Res. 2011, 41, 439–442. [Google Scholar] [CrossRef]
- Jiangxiong, W.; Yimin, C.; Yongxin, L. The reaction mechanism between MgO and microsilica at room temperature. J. Wuhan Univ. Technol. 2006, 21, 88–91. [Google Scholar] [CrossRef]
- Zhang, T.; Vandeperre, L.J.; Cheeseman, C.R. Formation of magnesium silicate hydrate (MSH) cement pastes using sodium hexametaphosphate. Cem. Concr. Res. 2014, 65, 8–14. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, T.; Hu, J.; Tang, Y.; Niu, Y.; Wei, J.; Yu, Q. Characterization of reaction products and reaction process of MgO–SiO2–H2O system at room temperature. Constr. Build. Mater. 2014, 61, 252–259. [Google Scholar] [CrossRef]
- Bernard, E.; Lothenbach, B.; Cau-Dit-Coumes, C.; Chlique, C.; Dauzeres, A.; Pochard, I. Magnesium and calcium silicate hydrates, Part I: Investigation of the possible magnesium incorporation in calcium silicate hydrate (CSH) and of the calcium in magnesium silicate hydrate (MSH). Appl. Geochem. 2018, 89, 229–242. [Google Scholar] [CrossRef]
- Bernard, E.; Lothenbach, B.; Cau-Dit-Coumes, C.; Pochard, I.; Rentsch, D. Aluminum incorporation into magnesium silicate hydrate (MSH). Cem. Concr. Res. 2020, 128, 105931. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Y.; Zhang, T.; Hu, J.; Wei, J.; Yu, Q. Effect of MgO calcination temperature on the reaction products and kinetics of MgO–SiO2–H2O system. J. Am. Ceram. Soc. 2019, 102, 3269–3285. [Google Scholar] [CrossRef]
- Zhang, Y.; Nath, M.; Wang, J.; Li, Y.; Zhang, S.; Zhu, T.; Xue, Z.; Chen, J. Temperature-dependent rehydration of magnesium silicate hydrate (MSH): Development of no-cement binder through MD/DFT validation. Ceram. Int. 2022, 48, 7063–7070. [Google Scholar] [CrossRef]
- Kim, G.; Im, S.; Jee, H.; Suh, H.; Cho, S.; Kanematsu, M.; Morooka, S.; Koyama, T.; Nishio, Y.; Machida, A. Effect of magnesium silicate hydrate (MSH) formation on the local atomic arrangements and mechanical properties of calcium silicate hydrate (CSH): In situ X-ray scattering study. Cem. Concr. Res. 2022, 159, 106869. [Google Scholar] [CrossRef]
- Dewitte, C.; Bertron, A.; Neji, M.; Lacarrière, L.; Dauzères, A. Chemical and Microstructural Properties of Designed Cohesive MSH Pastes. Materials 2022, 15, 547. [Google Scholar] [CrossRef]
- Bernard, E.; Lothenbach, B.; Rentsch, D.; Pochard, I.; Dauzères, A. Formation of magnesium silicate hydrates (MSH). Phys. Chem. Earth. 2017, 99, 142–157. [Google Scholar] [CrossRef]
- Roosz, C.; Grangeon, S.; Blanc, P.; Montouillout, V.; Lothenbach, B.; Henocq, P.; Giffaut, E.; Vieillard, P.; Gaboreau, S. Crystal structure of magnesium silicate hydrates (MSH): The relation with 2: 1 Mg–Si phyllosilicates. Cem. Concr. Res. 2015, 73, 228–237. [Google Scholar] [CrossRef]
- Nied, D.; Enemark-Rasmussen, K.; L’hopital, E.; Skibsted, J.; Lothenbach, B. Properties of magnesium silicate hydrates (MSH). Cem. Concr. Res. 2016, 79, 323–332. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, B.; Wu, Z.; Han, J.; Zhang, T.; Vandeperre, L.J.; Cheeseman, C.R. Role of sodium hexametaphosphate in MgO/SiO2 cement pastes. Cem. Concr. Res. 2016, 89, 63–71. [Google Scholar] [CrossRef]
- Li, Z.; Yu, Q.; Chen, X.; Liu, H.; Zhang, J.; Zhang, J.; Yang, Y.; Wei, J. The role of MgO in the thermal behavior of MgO–silica fume pastes. J. Therm. Anal. Calorim. 2017, 127, 1897–1909. [Google Scholar] [CrossRef]
- Xu, G.; La, Z.; Qian, G.; Yang, S.; Zhou, Q. Thermodynamic analysis of CaO–CaO–SiO2–MgO–H2O system under hydrothermal condition. J. Southwest Inst. Technol. 1999, 14, 1–5. (In Chinese) [Google Scholar]
- Lu, D.; Zheng, Y.; Liu, Y.; Xu, Z. Effect of light-burned magnesium oxide on deformation behavior of geopolymer and its mechanism. J. Chin. Ceram. Soc. 2012, 40, 1625–1630. [Google Scholar]
- Mo, L.; Deng, M.; Tang, M. Effects of calcination condition on expansion property of MgO-type expansive agent used in cement-based materials. Cem. Concr. Res. 2010, 40, 437–446. [Google Scholar] [CrossRef]
- Mo, L.; Deng, M.; Tang, M.; Al-Tabbaa, A. MgO expansive cement and concrete in China: Past, present and future. Cem. Concr. Res. 2014, 57, 1–12. [Google Scholar] [CrossRef]
- Ma, H.; Du, E.; Niu, X.; Feng, J. Drying shrinkage characteristics and mechanism primary exploration of MgO-slag mortars. Constr. Build. Mater. 2022, 333, 127416. [Google Scholar] [CrossRef]
- Zhang, T.; Liang, X.; Li, C.; Lorin, M.; Li, Y.; Vandeperre, L.J.; Cheeseman, C.R. Control of drying shrinkage in magnesium silicate hydrate (msh) gel mortars. Cem. Concr. Res. 2016, 88, 36–42. [Google Scholar] [CrossRef]
- Li, Z.; Lin, L.; Yu, J.; Tang, H.; Qin, J.; Qian, J. Performance of magnesium silicate hydrate cement modified with dipotassium hydrogen phosphate. Constr. Build. Mater. 2022, 323, 126389. [Google Scholar] [CrossRef]
- Brew, D.; Glasser, F. Synthesis and characterisation of magnesium silicate hydrate gels. Cem. Concr. Res. 2005, 35, 85–98. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Schott, J. Experimental study of brucite dissolution and precipitation in aqueous solutions: Surface speciation and chemical affinity control. Geochim. Cosmochim. Acta 2004, 68, 31–45. [Google Scholar] [CrossRef]
- Amaral, L.; Oliveira, I.; Salomão, R.; Frollini, E.; Pandolfelli, V. Temperature and common-ion effect on magnesium oxide (MgO) hydration. Ceram. Int. 2010, 36, 1047–1054. [Google Scholar] [CrossRef]
- Szczerba, J.; Prorok, R.; Śnieżek, E.; Madej, D.; Maślona, K. Influence of time and temperature on ageing and phases synthesis in the MgO–SiO2–H2O system. Thermochim. Acta 2013, 567, 57–64. [Google Scholar] [CrossRef]
- Chabrol, K.; Gressier, M.; Pebere, N.; Menu, M.-J.; Martin, F.; Bonino, J.-P.; Marichal, C.; Brendle, J. Functionalization of synthetic talc-like phyllosilicates by alkoxyorganosilane grafting. J. Mater. Chem. 2010, 20, 9695–9706. [Google Scholar] [CrossRef]
- Park, D.G.; Duchamp, J.C.; Duncan, T.M.; Burlitch, J.M. Preparation of forsterite by pyrolysis of a xerogel: The effect of water. Chem. Mater. 1994, 6, 1990–1995. [Google Scholar] [CrossRef]
- Mitsuda, T.; Taguchi, H. Formation of magnesium silicate hydrate and its crystallization to talc. Cem. Concr. Res. 1977, 7, 223–230. [Google Scholar] [CrossRef]
- Yan, W.; Yuan, P.; Tan, D.; Wu, D.; Liu, D. Infrared spectroscopic of Mg-rich and Mg-poor palygorskite. J. Chin. Ceram. Soc. 2013, 41, 89–95. [Google Scholar]
- Sonat, C.; Unluer, C. Investigation of the performance and thermal decomposition of MgO and MgO-SiO2 formulations. Thermochim. Acta 2017, 655, 251–261. [Google Scholar] [CrossRef]
- Unluer, C.; Al-Tabbaa, A. Impact of hydrated magnesium carbonate additives on the carbonation of reactive MgO cements. Cem. Concr. Res. 2013, 54, 87–97. [Google Scholar] [CrossRef]
- Hay, R.; Otchere, C.; Kashwani, G.; Celik, K. Recycling carbonated reactive magnesium cement (RMC) as a building material. J. Clean. Prod. 2021, 320, 128838. [Google Scholar] [CrossRef]
CaO | SiO2 | Al2O3 | MgO | K2O | Na2O | Loss | ∑ |
---|---|---|---|---|---|---|---|
1.25 | 95.73 | 0.51 | 0.64 | 1.05 | 0.35 | 0.15 | 99.68 |
Temperature/°C | 900.0 °C | 1050 °C | 1300 °C | 1450 °C | 1450 °C |
---|---|---|---|---|---|
Holding Time/h | 0.5 | 0.5 | 0.5 | 0.5 | 2 |
Sample Name | 9A0.5 | 10A0.5 | 13A0.5 | 14A0.5 | 14A2 |
(111) | 22.51 | 30.02 | 30.79 | 39.65 | 45.51 |
(200) | 22.15 | 28.43 | 29.31 | 38.22 | 41.37 |
(220) | 21.06 | 27.09 | 27.89 | 36.89 | 39.22 |
(311) | 20.55 | 27.85 | 31.55 | 37.32 | 38.15 |
(222) | 20.68 | 25.46 | 28.35 | 38.21 | 49.04 |
Average value | 21.39 | 27.77 | 29.58 | 38.06 | 42.66 |
Temperature/°C | 900.0 °C | 1150 °C | 1450 °C | ||||
---|---|---|---|---|---|---|---|
Holding Time/h | 0.5 h | 1 h | 2 h | 2 h | 0.5 h | 1 h | 2 h |
Sample Name | 9O0.5 | 9O1 | 9O2 | 11O2 | 14O0.5 | 14O1 | 14O2 |
(111) | 25.64 | 26.13 | 30.45 | 41.64 | 38.35 | 39.83 | 52.43 |
(200) | 21.75 | 22.10 | 27.86 | 38.74 | 39.08 | 37.86 | 47.70 |
(220) | 22.17 | 21.55 | 26.54 | 36.74 | 35.45 | 35.19 | 55.99 |
(311) | 26.00 | 24.82 | 27.92 | 37.17 | 34.92 | 38.17 | 60.27 |
(222) | 22.46 | 25.45 | 25.90 | 36.29 | 33.18 | 37.91 | 56.43 |
Average value | 23.60 | 24.01 | 27.73 | 38.12 | 36.20 | 37.79 | 54.57 |
Age (Day) | 20 °C | 50 °C | 80 °C |
---|---|---|---|
7 | 0.02 | 0.41 | 0.39 |
14 | 0.03 | 0.46 | 0.48 |
28 | 0.03 | 0.48 | 0.48 |
Age (Day) | 20 °C | 50 °C | 80 °C |
---|---|---|---|
7 | 6.4 | 19.7 | 17.6 |
14 | 13.1 | 23.2 | 21.8 |
28 | 17.5 | 23.8 | 21.7 |
Hydration Time (Days) | Temperature (°C) | δ29Si (ppm) and Relative Intensities (% Si) | PD a (%) | RD b (%) | Q3/Q2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Unreacted Silica | M-S-H | ||||||||||
Q3 | Q4 | Q1A | Q1B | Q2 | Q3A | Q3B | |||||
−98.8 | −110.9 | −75.4 | −80.0 | −85.6 | −92.6 | −97.7 | |||||
28 | 20 | 2.6 | 59.6 | 1.5 | 7.8 | 7.6 | 20.9 | - | 76.9 | 37.8 | 2.75 |
50 | - | 19.5 | 2.3 | 6.4 | 21.8 | 40.0 | 10.1 | 83.8 | 80.5 | 2.30 | |
80 | - | 26.3 | 1.6 | 8.3 | 14.7 | 37.4 | 11.6 | 84.4 | 73.7 | 3.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, F.; Hu, Y.; Song, Q.; Nie, J.; Su, J.; Chen, Y. Effect of Curing Temperature on the Properties of a MgO-SiO2-H2O System Prepared Using Dead-Burned MgO. Materials 2022, 15, 6065. https://doi.org/10.3390/ma15176065
Cheng F, Hu Y, Song Q, Nie J, Su J, Chen Y. Effect of Curing Temperature on the Properties of a MgO-SiO2-H2O System Prepared Using Dead-Burned MgO. Materials. 2022; 15(17):6065. https://doi.org/10.3390/ma15176065
Chicago/Turabian StyleCheng, Fuan, Yaru Hu, Qiang Song, Jiao Nie, Jiahao Su, and Yanxin Chen. 2022. "Effect of Curing Temperature on the Properties of a MgO-SiO2-H2O System Prepared Using Dead-Burned MgO" Materials 15, no. 17: 6065. https://doi.org/10.3390/ma15176065
APA StyleCheng, F., Hu, Y., Song, Q., Nie, J., Su, J., & Chen, Y. (2022). Effect of Curing Temperature on the Properties of a MgO-SiO2-H2O System Prepared Using Dead-Burned MgO. Materials, 15(17), 6065. https://doi.org/10.3390/ma15176065