Alkalizing Properties of Six Calcium-Silicate Endodontic Biomaterials
Abstract
:1. Introduction
2. Methods
3. Statistical Analysis
4. Results
5. Discussion
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walsh, R.M.; He, J.; Schweitzer, J.; Opperman, L.A.; Woodmansey, K.F. Bioactive endodontic materials for everyday use: A review. Gen Dent 2018, 66, 48–51. [Google Scholar] [PubMed]
- Gandolfi, M.G.; Siboni, F.; Polimeni, A.; Bossù, M.; Riccitiello, F.; Rengo, S.; Prati, C. In vitro screening of the apatite-forming ability, biointeractivity and physical properties of a tricalcium silicate material for endodontics and restorative dentistry. Dent. J. 2013, 1, 41–60. [Google Scholar] [CrossRef]
- Parirokh, M.; Torabinejad, M. Mineral trioxide aggregate: A comprehensive literature review-Part I: Chemical, physical, and antibacterial properties. J. Endod. 2010, 36, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Dawood, A.E.; Parashos, P.; Wong, R.H.K.; Reynolds, E.C.; Manton, D.J. Calcium silicate-based cements: Composition, properties, and clinical applications. J. Investig. Clin. Dent. 2017, 8, 1–15. [Google Scholar] [CrossRef]
- de Oliveira, N.G.; de Souza Araújo, P.R.; da Silveira, M.T.; Veras Sobral, A.P.; Carvalho, M.V. Comparison of the biocompatibility of calcium silicate-based materials to mineral trioxide aggregate: Systematic review. Eur. J. Dent. 2018, 12, 317–326. [Google Scholar] [CrossRef]
- Camilleri, J.; Laurent, P.; About, J. Hydration mechanisms of Biodentine, TheraCal, and a prototype tricalcium silicate-based dentin replacement after pulp capping entire tooth cultures. J. Endod. 2014, 40, 1846–1854. [Google Scholar] [CrossRef]
- Dutta, A.; Saunders, W.P. Calcium silicate materials in endodontics. Dent. Updat. 2014, 41, 708–722. [Google Scholar] [CrossRef]
- Camilleri, J. Characterization and hydration kinetics of tricalcium silicate cement for use as a dental biomaterial. Dent. Mater. 2011, 27, 836–844. [Google Scholar] [CrossRef]
- Chang, S.W. Chemical characteristics of mineral trioxide aggregate and its hydration reaction. Restor. Dent. Endod. 2012, 37, 188–193. [Google Scholar] [CrossRef]
- Gandolfi, M.G.; Taddei, P.; Siboni, F.; Modena, E.; Ciapetti, G.; Prati, C. Development of the foremost light-curable calcium-silicate MTA cement as root-end in oral surgery. Chemical–physical properties, bioactivity and biological behavior. Dent. Mater. 2011, 27, e134–e157. [Google Scholar] [CrossRef]
- Arandi, N.Z.; Rabi, T. TheraCal LC: From biochemical and bioactive properties to clinical applications. Int. J. Dent. 2018, 26, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Prati, C.; Siboni, F.; Polimeni, A.; Bossu, M.; Gandolfi, M.G. Use of calcium-containing endodontic sealers as apical barrier in fluid-contaminated wide-open apices. J. Appl. Biomater Funct Mater. 2014, 30, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Pelliccioni, G.A.; Vellani, C.P.; Gatto, M.R.A.; Gandolfi, M.G.; Marchetti, C.; Prati, C. Proroot Mineral Trioxide Aggregate Cement Used as a Retrograde Filling without Addition of Water: An In Vitro Evaluation of Its Microleakage. J. Endod. 2007, 33, 1082–1085. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, J.; Mallia, B. Evaluation of the dimensional changes of mineral trioxide aggregate sealer. Int. Endod J. 2011, 44, 416–424. [Google Scholar] [CrossRef]
- Duarte, M.A.H.; Marciano, M.A.; Vivan, R.R.; Filho, M.T.; Tanomaru, J.M.G.; Camilleri, J. Tricalcium silicate-based cements: Properties and modifications. Braz. Oral Res. 2018, 32, e70. [Google Scholar] [CrossRef]
- Fridland, M.; Rosado, R. Mineral Trioxide Aggregate (MTA) Solubility and Porosity with Different Water-to-Powder Ratios. J. Endod. 2003, 29, 814–817. [Google Scholar] [CrossRef]
- Duque, J.A.; Fernandes, S.L.; Bubola, J.P.; Duarte, M.A.H.; Camilleri, J.; Marciano, M.A. The effect of mixing method on tricalcium silicate-based cement. Int. Endod. J. 2017, 51, 69–78. [Google Scholar] [CrossRef]
- Duarte, M.A.H.; Minotti, P.G.; Rodrigues, C.T.; Zapata, R.O.; Bramante, C.M.; Tanomaru Filho, M.; Vivan, R.R.; De Moraes, I.G.; De Andrade, F.B. Effect of different radiopacifying agents on the physicochemical properties of white Portland cement and white mineral trioxide aggregate. J. Endod. 2012, 38, 394–397. [Google Scholar] [CrossRef]
- Sberna, M.T.; Rizzo, G.; Zacchi, E.; Capparè, P.; Rubinacci, A. A preliminary study of the use of peripheral quantitative computed tomography for investigating root canal anatomy. Int. Endod. J. 2008, 42, 66–75. [Google Scholar] [CrossRef]
- Lucchese, A.; Matarese, G.; Manuelli, M.; Ciuffreda, C.; Bassani, L.; Isola, G.; Cordasco, G.; Gherlone, E. Reliability and efficacy of palifermin in prevention and management of oral mucositis in patients with acute lymphoblastic leukemia: A randomized, double-blind controlled clinical trial. Minerva Stomatol. 2016, 65, 43–50. [Google Scholar]
- Gandolfi, M.G.; Siboni, F.; Prati, C. Chemical-physical properties of TheraCal, a novel light-curable MTA-like material for pulp capping. Int. Endod. J. 2012, 45, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, M.G.; Siboni, F.; Primus, C.M.; Prati, C. Ion Release, Porosity, Solubility, and Bioactivity of MTA Plus Tricalcium Silicate. J. Endod. 2014, 40, 1632–1637. [Google Scholar] [CrossRef]
- Camilleri, J.; Formosa, L.; Damidot, D. The setting characteristics of MTA Plus in different environmental conditions. Int. Endod. J. 2013, 46, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, E.; Cornélio, A.L.G.; Mestieri, L.B.; Fuentes, A.S.C.; Salles, L.; Rossa-Junior, C.; Faria, G.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M. Human dental pulp cells response to mineral trioxide aggregate (MTA) and MTA Plus: Cytotoxicity and gene expression analysis. Int. Endod. J. 2016, 50, 780–789. [Google Scholar] [CrossRef]
- Siboni, F.; Taddei, P.; Prati, C.; Gandolfi, M.G. Properties of NeoMTA Plus and MTA Plus cements for endodontics. Int. Endod. J. 2017, 50, e83–e94. [Google Scholar] [CrossRef]
- Han, L.; Okiji, T. Uptake of calcium and silicon released from calcium silicate-based endodontic materials into root canal dentine. Int. Endod. J. 2011, 44, 1081–1087. [Google Scholar] [CrossRef]
- Koubi, G.; Colon, P.; Franquin, J.-C.; Hartmann, A.; Richard, G.; Faure, M.-O.; Lambert, G. Clinical evaluation of the performance and safety of a new dentine substitute, Biodentine, in the restoration of posterior teeth—A prospective study. Clin. Oral Investig. 2012, 17, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Laurent, P.; Camps, J.; About, I. Biodentine (TM) induces TGF-ß1 release from human pulp cells and early dental pulp mineralization. Int. Endod. J. 2012, 45, 439–448. [Google Scholar] [CrossRef]
- Sinkar, R.C.; Patil, S.S.; Jogad, N.P.; Gade, V.J. Comparison of sealing ability of ProRoot MTA, RetroMTA, and Biodentine as furcation repair materials: An ultraviolet spectrophotometric analysis. J. Conserv. Dent. 2015, 18, 445–448. [Google Scholar] [CrossRef]
- Bakhtiar, H.; Aminishakib, P.; Ellini, M.R.; Mosavi, F.; Abedi, F.; Esmailian, S.; Esnaashari, E.; Nekoofar, M.H.; Sezavar, M.; Mesgarzadeh, V.; et al. Dental Pulp Response to RetroMTA after Partial Pulpotomy in Permanent Human Teeth. J. Endod. 2018, 44, 1692–1696. [Google Scholar] [CrossRef]
- de Souza, L.C.; Yadlapati, M.; Dorn, S.O.; Silva, R.; Letra, A. Analysis of radiopacity, pH and cytotoxicity of a new bioceramic material. J. Appl. Oral Sci. 2015, 23, 383–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guimarães, B.M.; Vivan, R.; Piazza, B.; Alcalde, M.P.; Bramante, C.; Duarte, M.A.H. Chemical-physical Properties and Apatite-forming Ability of Mineral Trioxide Aggregate Flow. J. Endod. 2017, 43, 1692–1696. [Google Scholar] [CrossRef] [PubMed]
- Endo-Eze MTA FLOW Gel Safety Data Sheet 2017. Available online: http://www.ultradent.com/en-us/Dental-Products-Supplies/Endodontics/MTA-repair-cement/endo-eze-MTAflow-mineral-trioxideaggregate-repair-cement (accessed on 20 June 2019).
- Bueno, C.R.E.; Vasques, A.M.V.; Cury, M.T.S.; Sivieri-Araújo, G.; Jacinto, R.C.; Gomes-Filho, J.E.; Cintra, L.T.A.; Dezan-Júnior, E. Biocompatibility and biomineralization assessment of Mineral Trioxide Aggregate Flow. Clin. Oral Investig. 2018, 23, 169–177. [Google Scholar] [CrossRef]
- Mondelli, J.A.S.; Hoshino, R.A.; Weckwerth, P.H.; Cerri, P.S.; Leonardo, R.T.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M.; Da Silva, G.F. Biocompatibility of mineral trioxide aggregate flow and biodentine. Int. Endod. J. 2018, 52, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.W.; Baek, S.H.; Yang, H.C.; Seo, D.G.; Hong, S.T.; Han, S.H.; Lee, Y.; Gu, Y.; Kwon, H.B.; Lee, W.; et al. Heavy metal analysis of OrthoMTA and ProRoot MTA. J. Endod. 2011, 37, 1673–1676. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.N.; Son, H.J.; Noh, H.J.; Koh, J.T.; Chang, H.S.; Hwang, I.N.; Hwang, Y.C.; Oh, W.M. Cytotoxicity of newly developed OrthoMTA root-end filling materials. J. Endod. 2012, 38, 1627–1630. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Yang, W.; Kim, H.; Ko, H. Comparison of the Biological Properties of ProRoot MTA, OrthoMTA, and Endocem MTA Cements. J. Endod. 2014, 40, 1649–1653. [Google Scholar] [CrossRef] [PubMed]
- Natale, L.C.; Rodrigues, M.C.; Xavier, T.A.; Simões, A.; De Souza, D.N.; Braga, R.R. Ion release and mechanical properties of calcium silicate and calcium hydroxide materials used for pulp capping. Int. Endod. J. 2014, 48, 89–94. [Google Scholar] [CrossRef]
- Poggio, C.; Lombardini, M.; Colombo, R.; Beltrami, R.; Rindi, S. Solubility and pH of direct pulp capping materials: A comparative study. J. Appl. Biomater Funct Mater. 2015, 13, 181–185. [Google Scholar]
- Camilleri, J.; Sorrentino, F.; Damidot, D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent. Mater. 2013, 29, 580–593. [Google Scholar] [CrossRef]
- Santos, A.D.; Moraes, J.C.; Araujo, E.B.; Yukimitu, K.; Valério Filho, W.V. Physico-chemical properties of MTA and a novel experimental cement. Int. Endod. J. 2005, 38, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Łuczaj-Cepowicz, E.; Marczuk-Kolada, G.; Pawińska, M.; Obidzinska, M.; Holownia, A. Evaluation of cytotoxicity and pH changes generated by various dental pulp capping materials—An in vitro study. Folia Histochem Cytobiol. 2017, 55, 86–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Łuczaj-Cepowicz, E.; Marczuk-Kolada, G.; Pawińska, M.; Obidzinska, M. Evaluation of pH changes produced by dental pulp capping materials: An in vitro study. Dent. Med. Probl. 2017, 54, 161–165. [Google Scholar] [CrossRef]
- Pereira, K.D.F.; Cruvinel, R.F.D.S.; Dantas, A.A.R.; Kuga, M.C. Evaluation of calcium release and pH value of light-cured cavity liners for pulp-capping materials. Rev. de Odontol. da UNESP 2018, 47, 205–209. [Google Scholar] [CrossRef]
- Larsen, M.J.; Horsted-Bindslev, P. A laboratory study evaluating the release of hydroxyl ions from various calcium hydroxide products in narrow root canal-like tubes. Int. Endod. J. 2000, 33, 238–242. [Google Scholar] [CrossRef]
- Gandolfi, M.G.; Siboni, F.; Botero, T.; Bossù, M.; Riccitiello, F.; Prati, C. Calcium Silicate and Calcium Hydroxide Materials for Pulp Capping: Biointeractivity, Porosity, Solubility and Bioactivity of Current Formulations. J. Appl. Biomater. Funct. Mater. 2015, 13, 43–60. [Google Scholar] [CrossRef]
- Aksoy, M.K.; Oz, T.F.; Orhan, K. Evaluation of calcium (Ca2+) and hydroxide (OH−) ion diffusion rates of indirect pulp capping materials. Int. J. Artif. Organs. 2017, 40, 641–646. [Google Scholar] [CrossRef]
- RetroMTA Catalogue. Available online: http://www.bioMTA.com (accessed on 19 February 2019).
- Haapasalo, M.; Qian, W.; Portenier, I.; Waltimo, T. Effects of Dentin on the Antimicrobial Properties of Endodontic Medicaments. J. Endod. 2007, 33, 917–925. [Google Scholar] [CrossRef]
Cement (Manufacturer) | Composition |
---|---|
TheraCal LC (Bisco Inc., Schaumburg, IL, USA) | Light cure paste: type III Portland cement, Sr glass, fumed silica, barium sulfate, barium zirconate, and resin-containing bisphenol A-glycidyl methacrylate, urethane dimethacrylate, triethylene glycol dimethacrylate, hydroxyethyl methacrylate, and polyethylene glycol dimethacrylate |
MTA Plus (PrevestDenpro, Jammu, India for Avalon Biomed Inc., Bradenton, FL, USA) | Powder: tricalcium silicate, dicalcium silicate, bismuth oxide, calcium sulphate, and silica Liquid: water or an anti-washout gel |
Biodentine (Septodont, Saint- Maur-des-Fossés, France) | Powder: tricalcium silicate, dicalcium silicate, calcium carbonate, calcium oxide, and zirconium oxide as a radiopacifier Liquid: water, calcium chloride solution, and hydrosoluble polymer |
RetroMTA (BioMTA, Seoul, Republic of Korea) | Powder: Tricalcium silicate, dicalcium silicate, tricalcium aluminate, tetracalciumaluminoferrite, free calcium oxide, bismuth oxide Liquid: deionized water |
MTA Flow (Ultradent Products, Inc., South Jordan, UT, USA) | Powder: di- and tricalcium silicate Liquid: water-based gel |
OrthoMTA (BioMTA, Seoul, Korea) | Powder: Tricalcium silicate, dicalcium silicate, tricalcium aluminate, tetracalciumaluminoferrite, free calcium oxide, bismuth oxide Liquid: deionized water |
Material | Time (Hour/Day/Week/Year) | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 H | 3 H | 1 D | 2 D | 3 D | 1 W | 2 W | 3 W | 1 Y | |
TheraCal | 9.79 ± 0.25 (9.48–10.1) ABCE a | 10.17 ± 0.10 (10.09–10.31) ABC abcdefgh | 10.53 ± 0.19 (10.35–10.83) ABCDE bcdefgh | 10.55 ± 0.16 (10.35–10.69) A cdefgh | 10.40 ± 0.39 (9.88–10.75) A defgh | 10.43 ± 0.45 (9.89–10.81) A efgh | 10.57 ± 0.39 (10.07–10.88) A fgh | 10.69 ± 0.34 (10.22–10.97) AB gh | 10.72 ± 0.41 (10.25–11.23) A h |
MTA Plus | 10.28 ± 0.24 (10.01–10.48) AGHIJ ab | 10.54 ± 0.30 (10.24–10.93) ADEF acd | 10.98 ± 0.34 (10.68–11.45) AGHI bcefghi | 11.24 ± 0.13 (11.14–11.47) BCD defghij | 11.42 ± 0.09 (11.28–11.53) BCD fghij | 11.51 ± 0.10 (11.34–11.59) BCDE ghij | 11.59 ± 0.43 (10.83–11.87) BCDE hij | 11.41 ± 0.77 (10.03–11.87) ACDEF ij | 11.91 ± 0.18 (11.64–12.11) BCDE j |
Biodentine | 9.65 ± 0.14 (9.45–9.77) BGK ab | 9.85 ± 0.11 (9.74–9.98) B acde | 10.03 ± 0.35 (9.62–10.33) B bcfg | 10.35 ± 0.40 (9.79–10.77) A dfh | 10.51 ± 0.50 (9.85–10.93) A egh | 11.11 ± 0.48 (10.36–11.67) BGHI ij | 11.45 ± 0.38 (10.79–11.76) BGHI ij | 11.50 ± 0.33 (10.92–11.77) BCHIJ j | 12.19 ± 0.05 (12.1–12.24) BGHI k |
RetroMTA | 10.10 ± 0.28 (9.77–10.50) CHKLM a | 10.71 ± 0.14 (10.48–10.86) DHI b | 10.99 ± 0.19 (10.77–11.20) CGJK c | 11.25 ± 0.16 (11.01–11.41) BFG cde | 11.35 ± 0.18 (11.14–11.50) BFG defg | 11.46 ± 0.18 (11.19–11.61) CGJK efg | 11.59 ± 0.10 (11.47–11.69) CGJK fg | 11.59 ± 0.09 (11.5–11.69) DHKL g | 11.86 ± 0.05 (11.79–11.93) CGJ h |
MTA Flow | 10.50 ± 0.37 (10.12–10.96) DILN a | 10.72 ± 0.31 (10.34–11.05) EHJ ab | 11.02 ± 0.21 (10.76–11.25) DHJL bc | 11.37 ± 0.10 (11.21–11.51) CFH cde | 11.62 ± 0.08 (11.55–11.76) CFH defg | 11.63 ± 0.12 (11.47–11.78) DHJL efg | 11.91 ± 0.17 (11.61–12.04) DHJ fgh | 11.91 ± 0.17 (11.63–12.08) EIKM gh | 12.20 ± 0.18 (11.97–12.43) DHJK h |
OrthoMTA | 10.41 ± 0.51 (9.89–11.12) EJMN ab | 10.52 ± 0.19 (10.34–10.85) CFIJ ac | 10.81 ± 0.22 (10.54–11.11) EIKL bcd | 11.20 ± 0.15 (11.01–11.4) DGH def | 11.45 ± 0.19 (11.12–11.59) DGH efgh | 11.63 ± 0.10 (11.52–11.78) EIKL fgh | 11.75 ± 0.14 (11.61–11.95) EIKL gh | 11.78 ± 0.17 (11.54–11.96) FJLM h | 12.29 ± 0.27 (12.01–12.69) EIK i |
Control group | 6.80 ± 0.02 (6.77–6.88) F a | 6.82 ± 0.10 (6.70–7.00) G a | 6.84 ± 0.18 (6.60–7.10) F a | 6.80 ± 0.02 (6.77–6.82) E a | 6.88 ± 0.16 (6.60–7.02) E a | 6.80 ± 0.12 (6.64–7.00) F a | 6.82 ± 0.08 (6.70–6.90) F a | 6.81 ± 0.10 (6.72–7.00) G a | 6.85 ± 0.18 (6.78–7.20) F a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kot, K.; Kucharski, Ł.; Marek, E.; Safranow, K.; Lipski, M. Alkalizing Properties of Six Calcium-Silicate Endodontic Biomaterials. Materials 2022, 15, 6482. https://doi.org/10.3390/ma15186482
Kot K, Kucharski Ł, Marek E, Safranow K, Lipski M. Alkalizing Properties of Six Calcium-Silicate Endodontic Biomaterials. Materials. 2022; 15(18):6482. https://doi.org/10.3390/ma15186482
Chicago/Turabian StyleKot, Katarzyna, Łukasz Kucharski, Ewa Marek, Krzysztof Safranow, and Mariusz Lipski. 2022. "Alkalizing Properties of Six Calcium-Silicate Endodontic Biomaterials" Materials 15, no. 18: 6482. https://doi.org/10.3390/ma15186482