The Impact of Co Doping and Annealing Temperature on the Electrochemical Performance and Structural Characteristics of SnO2 Nanoparticulate Photoanodes
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Preparation
2.2. Measurements
3. Results and Discussions
3.1. XRD and AFM Study
3.2. Raman Spectral Analysis and Optical Properties
3.3. Photoelectrochemical H2 Generation
3.3.1. Influence of the Doping Ratio and the Used Electrolyte
3.3.2. PEC Reusability and Stability of the (2.5% Co, 673 K) SnO2 Photoanode
3.3.3. Effect of Temperature and Thermodynamic Parameters
3.3.4. Effect of Monochromatic Light Illumination and Conversion Efficiencies
3.3.5. PEC Impedance Spectroscopy (PEC-IS)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, H.; Yu, S.; Wang, Y.; Han, J.; Wang, L.; Song, N.; Dong, H.; Li, C. A facile one-step strategy to construct 0D/2D SnO2/g-C3N4 heterojunction photoelectrode for high-efficiency hydrogen production performance from water splitting. Int. J. Hydrogen Energy 2020, 45, 30142–30152. [Google Scholar] [CrossRef]
- Khan, S.B.; Kamal, T.; Asiri, A.M.; Bakhsh, E.M. Iron doped nanocomposites based efficient catalyst for hydrogen production and reduction of organic pollutant. Colloids Surf. A 2021, 608, 125502. [Google Scholar] [CrossRef]
- Mallikarjuna, K.; Bari, G.A.K.M.R.; Vattikuti, S.V.P.; Kim, H. Synthesis of carbon-doped SnO2 nanostructures for visible-light-driven photocatalytic hydrogen production from water splitting. Int. J. Hydrogen Energy 2020, 45, 32789–32796. [Google Scholar] [CrossRef]
- Abdelkarim, O.; Kaur, J.; Liu, J.; Navarro-Pardo, F.; Zarrin, H.; Yurtsever, A.; Bassioni, G.; Wang, Z.M.; Selopal, G.S.; Rosei, F. Two-dimensional functionalized hexagonal boron nitride for quantum dot photoelectrochemical hydrogen generation. J. Mater. Chem. A 2020, 8, 20698–20713. [Google Scholar] [CrossRef]
- Cetinorgu, E.; Goldsmith, S. Chemical and thermal stability of the characteristics of filtered vacuum arc deposited ZnO, SnO2 and zinc stannate thin films. J. Phys. D Appl. Phys. 2007, 40, 5220–5226. [Google Scholar] [CrossRef]
- Geng, J.; Chen, J.; Ma, C.; Ning, X. Hierarchical nanostructured Au-SnO2 for enhanced energy storage performance. Int. J. Hydrogen Energy 2020, 45, 29395–29406. [Google Scholar] [CrossRef]
- Mamakhel, A.; Søndergaard, M.; Borup, K.; Iversen, B.B. Continuous flow hydrothermal synthesis of rutile SnO2 nanoparticles: Exploration of pH and temperature effects. J. Supercrit. Fluids 2020, 166, 105029. [Google Scholar] [CrossRef]
- Shaban, M.; Almohammedi, A.; Saad, R.; Sayed, A.M.E. Design of SnO2:Ni,Ir Nanoparticulate Photoelectrodes for Efficient Photoelectrochemical Water Splitting. Nanomaterials 2022, 12, 453. [Google Scholar] [CrossRef]
- Al-Kuhaili, M.F. Co-sputtered tantalum-doped tin oxide thin films for transparent conducting applications. Mater. Chem. Phys. 2021, 257, 123749. [Google Scholar] [CrossRef]
- Srinivas, K.; Vithal, M.; Sreedhar, B.; Raja, M.M.; Reddy, P.V. Structural, Optical, and Magnetic Properties of Nanocrystalline Co Doped SnO2 Based Diluted Magnetic Semiconductors. J. Phys. Chem. C 2009, 113, 3543–3552. [Google Scholar] [CrossRef]
- Mazloom, J.; Ghodsi, F.E. Spectroscopic, microscopic, and electrical characterization of nanostructured SnO2: Co thin films prepared by sol–gel spin coating technique. Mater. Res. Bull. 2013, 48, 1468–1476. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Boris, I.; Brinzari, V.; Hand, S.H.; Cho, B.K. The role of doping effect on the response of SnO2-based thin film gas sensors: Analysis based on the results obtained for Co-doped SnO2 films deposited by spray pyrolysis. Sens. Actuators B 2013, 182, 112–124. [Google Scholar] [CrossRef]
- Podurets, A.; Kolokolov, D.; Barr, M.K.S.; Ubyivovk, E.; Osmolowsky, M.; Bobrysheva, N.; Bachmann, J.; Osmolovskaya, O. Enhanced visible-light photocatalytic activity of core-shell oxide nanoparticles synthesized by wet chemical precipitation and atomic layer deposition. Appl. Surf. Sci. 2020, 533, 147520. [Google Scholar] [CrossRef]
- Bozheyev, F.; Akinoglu, E.M.; Wu, L.; Lou, S.; Giersig, M. Effect of Mo-doping in SnO2 thin film photoanodes for water oxidation. Int. J. Hydrogen Energy 2020, 45, 33448–33456. [Google Scholar] [CrossRef]
- Bai, S.; Tian, K.; Meng, J.C.; Zhao, Y.; Sun, J.; Zhang, K.; Feng, Y.; Luo, R.; Li, D.; Chen, A. Reduced graphene oxide decorated SnO2/BiVO4 photoanode for photoelectrochemical water splitting. J. Alloy Compd. 2021, 855, 156780. [Google Scholar] [CrossRef]
- Wang, W.; Wei, X.; Wang, C.; Zhou, W.; Zhu, B.; Wang, C.; Liu, L. Fabrication and thermo stability of the SnO2/Ag/SnO2 tri-layer transparent conductor deposited by magnetic sputtering. Ceram. Int. 2021, 47, 3548–3552. [Google Scholar] [CrossRef]
- Yang, H.; Li, Y.; Zhang, D.; Li, Z.; Wang, J.; Yang, D.; Hao, X.; Guan, G. Defect-engineering of tin oxide via (Cu, N) co-doping for electrocatalytic and photocatalytic CO2 reduction into formate. Chem. Eng. Sci. 2020, 227, 115947. [Google Scholar] [CrossRef]
- Ismail, R.A.; Majeed, A.M.A. Preparation and investigation of nanostructured SnO2: Pd/ porous silicon/c-Si heterostructure solar cell. J. Solid State Electrochem. 2021, 25, 1039–1048. [Google Scholar] [CrossRef]
- Sohal, M.K.; Mahajan, A.; Gasso, S.; Nahirniak, S.V.; Dontsova, T.A.; Singh, R.C. Modification of SnO2 surface oxygen vacancies through Er doping for ultralow NO2 detection. Mater. Res. Bull. 2021, 133, 111051. [Google Scholar] [CrossRef]
- Matussin, S.N.; Harunsani, M.H.; Tan, A.L.; Cho, M.H.; Khan, M.M. Effect of Co2+ and Ni2+ co-doping on SnO2 synthesized via phytogenic method for photoantioxidant studies and photoconversion of 4-nitrophenol. Mater. Today Communicat. 2020, 25, 101677. [Google Scholar] [CrossRef]
- Lee, S.H.; Hong, Y.; Ryu, H.; Yun, J. Improving the photostability of cupric oxide nanorods. Thin Solid Film. 2020, 697, 137849. [Google Scholar] [CrossRef]
- Toloman, D.; Popa, A.; Stefan, M.; Silipas, T.D.; Suciu, R.C.; Barbu-Tudoran, L.; Pana, O. Enhanced photocatalytic activity of Co doped SnO2 nanoparticles by controlling the oxygen vacancy states. Opt. Mater. 2020, 110, 110472. [Google Scholar] [CrossRef]
- Barakat, M.A.Y.; Shaban, M.; El Sayed, A.M. Structural, ultrasonic and spectroscopic studies of tin oxide thin films; effect of Ir and (Ni, Ir) double doping. Mater. Res. Express 2018, 5, 066407. [Google Scholar] [CrossRef]
- Karslıoğlu, R.; Uysal, M.; Akbulut, H. The effect of substrate temperature on the electrical and optic properties of nanocrystalline tin oxide coatings produced by APCVD. J. Cryst. Growth 2011, 327, 22–26. [Google Scholar] [CrossRef]
- El Sayed, A.M.; Taha, S.; Shaban, M.; Said, G. Tuning the structural, electrical and optical properties of tin oxide thin films via cobalt doping and annealing. Superlattices Microstruct. 2016, 95, 1–13. [Google Scholar] [CrossRef]
- Wang, J.T.; Shi, X.L.; Zhong, X.H.; Wang, J.N.; Pyrah, L.; Sanderson, K.D.; Ramsey, P.M.; Hirata, M.; Tsuri, K. Morphology control of fluorine-doped tin oxide thin films for enhanced light trapping. Sol. Energy Mater. Sol. Cells 2015, 132, 578–588. [Google Scholar] [CrossRef]
- Shaban, M.; Abdelkarem, K.; El Sayed, A.M. Structural, optical and gas sensing properties of Cu2O/CuO mixed phase: Effect of the number of coated layers and (Cr + S) co-Doping. Phase Transit. 2019, 92, 347–359. [Google Scholar] [CrossRef]
- Puga, F.; Navío, J.A.; Hidalgo, M.C. Enhanced UV and visible light photocatalytic properties of synthesized AgBr/SnO2 composites. Sep. Purif. Technol. 2021, 257, 117948. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, G.; Li, C.; Liu, J.; Guo, K.; Ning, H.; Shi, M.; Guo, D.; Yao, R.; Peng, J. Effects of rapid thermal annealing on wide band gap tungsten oxide films. Superlattices Microstruct. 2020, 142, 106541. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Geng, X.-P.; Wu, W.-Y.; Zhao, M.-J.; Zhang, X.-Y.; Huang, P.-H.; Lien, S.-Y. Air Annealing Effect on Oxygen Vacancy Defects in Al-doped ZnO Films Grown by High-Speed Atmospheric Atomic Layer Deposition. Molecules 2020, 25, 5043. [Google Scholar] [CrossRef]
- Sun, C.-W.; Hsiau, S.-S. Effect of Electrolyte Concentration Difference on Hydrogen Production during PEM Electrolysis. J. Electrochem. Sci. Technol. 2018, 9, 99–108. [Google Scholar] [CrossRef]
- Koval, C.A.; Howard, J.N. Electron transfer at semiconductor electrode-liquid electrolyte interfaces. Chem. Rev. 1992, 92, 411–433. [Google Scholar] [CrossRef]
- Tayyebi, A.; Soltani, T.; Lee, B.-K. Effect of pH on photocatalytic and photoelectrochemical (PEC) properties of monoclinic bismuth vanadate. J. Colloid Interface Sci. 2019, 534, 37–46. [Google Scholar] [CrossRef]
- Ahmad, I.; Akhtar, M.S.; Ahmed, E.; Ahmad, M. Highly efficient visible light driven photocatalytic activity of graphene and CNTs based Mg doped ZnO photocatalysts: A comparative study. Sep. Purif. Technol. 2020, 245, 116892. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Mohamed, F.; Ashraf, A.M.; Shaban, M.; Aslam, A.; Khan, P.; Asiri, A.M. Enhanced photoelectrochemical water splitting activity of carbon nanotubes@ TiO2 nanoribbons in different electrolytes. Chemosphere 2020, 238, 124554. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, S.; Upadhyay, S.; Kumar, P.; Singh, N.; Satsangi, V.R.; Shrivastav, R.; Dass, S. Nanostructured bilayered thin films in photoelectrochemical water splitting—A review. Int. J. Hydrogen Energy 2012, 37, 18713–18730. [Google Scholar] [CrossRef]
- Mattheis, J.; Werner, J.H.; Rau, U. Finite mobility effects on the radiative efficiency limit of pn-junction solar cells. Phys. Rev. B 2008, 77, 085203. [Google Scholar] [CrossRef]
- Mohamed, F.; Rabia, M.; Shaban, M. Synthesis and characterization of biogenic iron oxides of different nanomorphologies from pomegranate peels for efficient solar hydrogen production. J. Mater. Res. Technol. 2020, 9, 4255–4271. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Abdalla, E.M.; Shaban, M. Simple and low-cost synthesis of Ba-doped CuO thin films for highly efficient solar generation of hydrogen. J. Phys. Chem. C 2020, 124, 22347–22356. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Rabia, M.; Shaban, M. The structure and photoelectrochemical activity of Cr-doped PbS thin films grown by chemical bath deposition. RSC Adv. 2020, 10, 14458–14470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, C.; Moniz, S.J.A.; Wang, A.; Zhang, T.; Tang, J. Photoelectrochemical devices for solar water splitting–materials and challenges. Chem. Society Rev. 2017, 46, 4645–4660. [Google Scholar] [CrossRef] [PubMed]
- Aboud, A.A.; Shaban, M.; Revaprasadu, N. Effect of Cu, Ni and Pb doping on the photo-electrochemical activity of ZnO thin films. RSC Adv. 2019, 9, 7729–7736. [Google Scholar] [CrossRef]
- Zayed, M.; Nasser, N.; Shaban, M.; Alshaikh, H.; Hamdy, H.; Ahmed, A.M. Effect of morphology and plasmonic on Au/ZnO films for efficient photoelectrochemical water splitting. Nanomaterials 2021, 11, 2338. [Google Scholar] [CrossRef]
- Rabia, M.; Shaban, M.; Adel, A.; Abdel-Khaliek, A.A. Effect of Plasmonic Au Nanoparticles on the Photoactivity of Polyaniline/Indium Tin Oxide Electrodes for Water Splitting. Environ. Prog. Sustain. Energy 2019, 38, 13171. [Google Scholar] [CrossRef]
- Helal, N.H. Corrosion inhibition and adsorption behavior of methionine on Mg-Al-Zn alloy. J. Chem. Eng. Mater. Sci. 2011, 2, 28–38. [Google Scholar]
- Tian, H.; Zhao, G.; Zhang, Y.-N.; Wang, Y.; Cao, T. Hierarchical (0 0 1) facet anatase/rutile TiO2 heterojunction photoanode with enhanced photoelectrocatalytic performance. Electrochim. Acta 2013, 96, 199–205. [Google Scholar] [CrossRef]
- Mohammadnezhad, G.; Momeni, M.M.; Nasiriani, F. Enhanced photoelectrochemical performance of tin oxide decorated tungsten oxide doped TiO2 nanotube by electrodeposition for water splitting. J. Electroanalyt. Chem. 2020, 876, 114505. [Google Scholar] [CrossRef]
- Tian, M.; Peng, W.; Shang, B.; Tao, W.; Xiao, Y. Facile fabrication of visible light driven tin oxide photoanode and its photoelectrochemical water splitting properties. Int. J. Hydrogen Energy 2012, 37, 12827–12832. [Google Scholar] [CrossRef]
- Azevedo, J.; Tilley, S.D.; Schreier, M.; Stefik, M.; Sousa, C.; Araújo, J.P.; Mendes, A.; Grätzel, M.; Mayer, M.T. Tin oxide as stable protective layer for composite cuprous oxide water-splitting photocathodes. Nano Energy 2016, 24, 10–16. [Google Scholar] [CrossRef]
- Hernández, S.; Tortello, M.; Sacco, A.; Quaglio, M.; Meyer, T.; Bianco, S.; Saracco, G.; Pirri, C.F.; Tresso, E. New Transparent Laser-Drilled Fluorine-doped Tin Oxide covered Quartz Electrodes for Photo-Electrochemical Water Splitting. Electrochim. Acta 2014, 131, 184–194. [Google Scholar] [CrossRef]
- Seza, A.; Soleimani, F.; Naseri, N.; Soltaninejad, M.; Montazeri, S.M.; Sadrnezhaad, S.K.; Mohammadi, M.R.; Moghadam, H.A.; Forouzandeh, M.; Amin, M.H. Novel microwave-assisted synthesis of porous g-C3N4/SnO2 nanocomposite for solar water-splitting. Appl. Surf. Sci. 2018, 440, 153–161. [Google Scholar] [CrossRef]
- Dholam, R.; Patel, N.; Santini, A.; Miotello, A. Efficient indium tin oxide/Cr-doped-TiO2 multilayer thin films for H2 production by photocatalytic water-splitting. Int. J. Hydrogen Energy 2010, 35, 9581–9590. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, G.; Wu, Z.; Han, W.; Wang, Y.; Fu, W.; Li, X.; Xie, E. Toward efficient photoelectrochemical water-splitting by using screw-like SnO2 nanostructures as photoanode after being decorated with CdS quantum dots. Nano Energy 2016, 19, 318–327. [Google Scholar] [CrossRef]
- Vattikuti, S.V.P.; Reddy, P.A.K.; Shim, J.; Byon, C. Visible-Light-Driven Photocatalytic Activity of SnO2-ZnO Quantum Dots Anchored on g-C3N4 Nanosheets for Photocatalytic Pollutant Degradation and H2 Production. ACS Omega 2018, 3, 7587–7602. [Google Scholar] [CrossRef]
- Mohammad, A.; Khan, M.E.; Karim, M.R.; Cho, M.H. Synergistically effective and highly visible light responsive SnO2-g-C3N4 nanostructures for improved photocatalytic and photoelectrochemical performance. Appl. Surf. Sci. 2019, 495, 143432. [Google Scholar] [CrossRef]
- Guerrero-Araque, D.; Acevedo-Peña, P.; Ramírez-Ortega, D.; Lartundo-Rojas, L.; Gómez, R. SnO2–TiO2 structures and the effect of CuO, CoO metal oxide on photocatalytic hydrogen production. J. Chem. Technol. Biotechnol. 2017, 92, 1531–1539. [Google Scholar] [CrossRef]
- Khan, M.M.; Ansari, S.A.; Khan, M.E.; Ansari, M.O.; Min, B.K.; Cho, M.H. Visible light-induced enhanced photoelectrochemical and photocatalytic studies of gold decorated SnO2 nanostructures. New J. Chem. 2015, 39, 2758–2766. [Google Scholar] [CrossRef]
- Liao, X.; Chen, J.; Wang, M.; Liu, Z.; Ding, L.; Li, Y. Enhanced photocatalytic and photoelectrochemical activities of SnO2/SiC nanowire heterostructure photocatalysts. J. Alloys Compd. 2016, 658, 642–648. [Google Scholar] [CrossRef]
Film | CT | TC | Cs (nm) | δ × 10−3 (1/nm2) | ||
---|---|---|---|---|---|---|
(110) | (101) | (211) | ||||
Un-doped SnO2 | 673 K | 1.377 | 1.054 | 0.568 | 23.4 | 1.83 |
773 K | 1.357 | 1.062 | 0.581 | 29.2 | 1.17 | |
873 K | 1.267 | 1.09 | 0.642 | 24.3 | 1.69 | |
2.5 at.% Co | 673 K | 1.368 | 1.091 | 0.541 | 25.6 | 1.53 |
773 K | 1.303 | 1.115 | 0.582 | 27.7 | 1.3 | |
873 K | 1.354 | 1.096 | 0.55 | 26.2 | 1.46 | |
5.0 at.% Co | 673 K | 1.309 | 1.139 | 0.552 | 21.2 | 2.22 |
773 K | 1.319 | 1.102 | 0.579 | 22.3 | 2.01 | |
873 K | 1.514 | 1.077 | 0.41 | 24.1 | 1.72 | |
7.5 at.% Co | 673 K | 1.354 | 1.096 | 0.55 | 18.4 | 2.95 |
773 K | 1.34 | 1.115 | 0.545 | 22.6 | 1.96 | |
873 K | 1.489 | 1.071 | 0.441 | 26.7 | 1.4 |
Film | CT | Thickness (nm) | Eg (eV) |
---|---|---|---|
Un-doped SnO2 | 673 K | 256 | 3.75 |
773 K | 259 | 3.93 | |
873 K | 255 | – | |
2.5 at.% Co | 673 K | 262 | 3.7 |
773 K | 265 | 3.82 | |
873 K | 261 | – | |
5.0 at.% Co | 673 K | 267 | 3.68 |
773 K | 270 | 3.75 | |
873 K | 264 | – | |
7.5 at.% Co | 673 K | 257 | 3.73 |
773 K | 259 | 3.67 | |
873 K | 256 | – |
Catalyst | Electrolyte | Jph (mA/cm2) | IPCE % | H2 Production Rate | Ref. |
---|---|---|---|---|---|
SnO2 decorated tungsten oxide doped TiO2 nanotube (Sn-WTNT) | KOH | [email protected] V | - | - | [47] |
SnO2 | Na2SO4 | 0.1@1 V | 2.3%@400 nm | - | [48] |
Cu2O/SnO2/RuO2 | Na2SO4 | −[email protected] E/V vs. RHE | - | - | [49] |
Laser-Drilled Fluorine-doped Tin Oxide covered Quartz Electrodes | Sodium Phosphate Buffer | [email protected] V | - | - | [50] |
g-C3N4/SnO2 | Na2SO4 | [email protected] V | - | - | [51] |
Indium Tin Oxide (ITO)/Cr-doped-TiO2 | H2SO4 | [email protected] V | - | - | [52] |
SnO2/CdS quantum dots | Na2SO3 | 9.9@0 V | 40%@375 nm | - | [53] |
SnO2-ZnO Quantum Dots/g-C3N4 (SZ/g-C3N4) | 5% aqueous glycerol solution | - | - | 13,673.61 μmol g–1/5 h | [54] |
SnO2-g—C3N4 | Na2SO4 | 8.9@1 V | - | - | [55] |
(1%CuO, 1%CoO) co-doped SnO2-TiO2 | Water/methanol solution (1:1) | - | - | 1486.4 µmol g−1 h−1 | [56] |
Au–SnO2 | Na2SO4 | 1.3 mA@−1 V | - | - | [57] |
SnO2/SiC nanowires | H2SO4 | [email protected] V | - | 274 μmol g−1 h−1 | [58] |
(2.5% Co, 673 K) SnO2 | 0.5M NaOH | 21.25@1V | 6.892%@307 nm | 39.45 mmol.h−1 cm−2 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altowyan, A.S.; Shaban, M.; Abdelkarem, K.; El Sayed, A.M. The Impact of Co Doping and Annealing Temperature on the Electrochemical Performance and Structural Characteristics of SnO2 Nanoparticulate Photoanodes. Materials 2022, 15, 6534. https://doi.org/10.3390/ma15196534
Altowyan AS, Shaban M, Abdelkarem K, El Sayed AM. The Impact of Co Doping and Annealing Temperature on the Electrochemical Performance and Structural Characteristics of SnO2 Nanoparticulate Photoanodes. Materials. 2022; 15(19):6534. https://doi.org/10.3390/ma15196534
Chicago/Turabian StyleAltowyan, Abeer S., Mohamed Shaban, Khaled Abdelkarem, and Adel M. El Sayed. 2022. "The Impact of Co Doping and Annealing Temperature on the Electrochemical Performance and Structural Characteristics of SnO2 Nanoparticulate Photoanodes" Materials 15, no. 19: 6534. https://doi.org/10.3390/ma15196534
APA StyleAltowyan, A. S., Shaban, M., Abdelkarem, K., & El Sayed, A. M. (2022). The Impact of Co Doping and Annealing Temperature on the Electrochemical Performance and Structural Characteristics of SnO2 Nanoparticulate Photoanodes. Materials, 15(19), 6534. https://doi.org/10.3390/ma15196534