Study on the Performance of Steel Slag and Its Asphalt Mixture with Oxalic Acid and Water Erosion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Treatment Method
2.3. Experimental Method
2.4. Mix Proportion Design of Steel Slag Mixture
3. Results and Discussion
3.1. Basic Properties of Steel Slag Aggregate
3.1.1. Expansion of Steel Slag
3.1.2. Basicity and Adhesion
3.1.3. Crush Resistance
3.2. Water Stability of Steel Slag Asphalt Mixture
3.2.1. Marshall Stability
3.2.2. Freeze–Thaw Splitting
3.3. Rutting Stability and Bending Crack Resistance of Steel Slag Asphalt Mixture
3.4. Mechanism of Action of Oxalic Acid
3.5. Mechanism of Influence of Water Erosion on the Phase Composition of Steel Slag
4. Conclusions
- (1)
- Oxalic acid is able to promote the hydration reaction of f-CaO on the surface of steel slag, eliminate some f-CaO in steel slag, and inhibit the volume expansion of steel slag. However, due to the leaching of alkaline ions, the adhesion decreases. After 7 days of water erosion, the crush resistance of treated steel slag tends to be stable. Water erosion has little effect on the crush resistance of steel slag.
- (2)
- After oxalic acid treatment, the performance of the steel slag asphalt mixture is improved, but in the process of water erosion, its performance decreases obviously, especially with respect to rutting stability and bending crack resistance. The performance of the steel slag asphalt mixture after treatment is greatly reduced after being subjected to low temperature, and its low-temperature performance needs further consideration.
- (3)
- Water erosion is able to accelerate the hydration of calcium silicate and f-CaO on the surface of steel slag, leading to the slight expansion of the steel slag surface, decreased adhesion, and a decline in the performance of the steel slag asphalt mixture. Oxalic acid can react with calcium silicate and f-CaO on the surface of steel slag to produce Ca2C2O4. It can promote the hydration of f-CaO, filling the surface and most pores of the steel slag, effectively inhibiting the expansion effect of f-CaO hydration on the surface of steel slag after water erosion, and improving the strength of the steel slag.
- (4)
- The surface of steel slag treated with oxalic acid mostly consists of the Ca2C2O4 complex. With increasing water erosion time, the shedding degree of Ca2C2O4 increases. Most basic metal elements on the surface of steel slag are leached out, and the adhesion between steel slag and asphalt decreases more obviously, which finally leads to a decline in the performance of the asphalt mixture. After a long duration of water erosion, the properties of steel slag treated with oxalic acid and its asphalt mixture are similar to those of untreated steel slag, indicating that it is feasible to apply steel slag treated with oxalic acid in asphalt mixtures.
- (5)
- This work solves the problem that steel slag is difficult to apply due to volume expansion, and the treated steel slag can be widely used in asphalt mixtures. This provides a solution to the excessive accumulation and output of steel slag at present, in China, and solves the environmental problems caused by steel slag and the lack of natural aggregates in China. It is worth noting that whether the performance of steel slag asphalt mixture changes under the long-term action of water erosion and how the performance changes under actual application conditions are the factors that determine whether the steel slag asphalt mixture can ultimately be applied. In future research, it is worth our continued consideration.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, S.Y.; Huo, B.B.; Chen, C.; Zhang, Y.M. The Influence of Metakaolin on the Hydration of Steam-cured Steel Slag Blended Cement. Mater. Rep. 2022, 36, 73–78. [Google Scholar]
- He, L.; Zhan, C.Y.; Lv, S.T.; James, G.; Gao, J.; Karol, K.J.; Jan, V.; Xie, J.; Lidija, R.; Lling, T.Q. Application Status of Steel Slag Asphalt Mixture. J. Traffic Transp. Eng. 2020, 20, 15–33. [Google Scholar]
- Cui, P.; Wu, S.; Xiao, Y.; Yang, C.; Wang, F. Enhancement Mechanism of Skid Resistance in Preventive maintenance of Asphalt Pavement by Steel slag Asedb on Micro-surfacing. Constr. Build. Mater. 2020, 239, 117870. [Google Scholar] [CrossRef]
- Loncnar, M.; Mladenovic, A.; Zalar, S.V.; Zupancic, M.; Vander, S.H.A. Leaching and Geochemical Modelling of an Electric Arc Furnace (EAF) and Ladle Slag Heap. Toxics 2022, 10, 10. [Google Scholar] [CrossRef]
- Cui, P.D.; Wu, S.P.; Xiao, Y.; Hu, R.; Yang, T.Y. Environmental performance and functional analysis of chip seals with recycled basic oxygen furnace slag as aggregate. J. Hazard. Mater. 2021, 405, 124441. [Google Scholar] [CrossRef]
- Wu, S.P.; Cui, P.D.; Xie, J.; LIU, Q.T.; Pang, L. Expansive Inhibition method of Steel Slag Aggregate and Volume Stability of Mixture: A Review. China J. Highw. Transp. 2021, 34, 166–179. [Google Scholar]
- Kambole, C.; Paigge Green, P.; Kupolati, W.K.; Ndambuki, J.M.; Adeboje, A.O. Basic Oxygen Furnace Slag for Road Pavements: A Review of Material Characteristics and Performance for Effective Utilisation in Southern Africa. Constr. Build. Mater. 2017, 148, 618–631. [Google Scholar] [CrossRef]
- Zpa, B.; Pm, A.; Mrk, A.; Mb, A.; Sh, B.; Ldp, A. Urban Mining for Asphalt Pavements: A Review—ScienceDirect. J. Clean. Prod. 2021, 280, 124916. [Google Scholar]
- Li, C.; Chen, Z.W.; Xie, J.; Wu, S.P.; Xiao, Y. A Technological and Applicational Review on Steel Slag Asphalt Mixture. Mater. Rep. 2017, 31, 86–95, discussion 122. [Google Scholar]
- Mo, L.T.; Lin, S.; Meng, X.Y.; Qu, L.C.; Chang, W.W.; Xiao, Y. Volume Expansion Characteristics and Crack Simulation of Steel Slag. China J. Highw. Transp. 2021, 34, 180–189. [Google Scholar]
- Wang, C. Study on the Surface Modification Technology of Steel Slag and the Performance of Modified Steel Slag Asphalt Mixture. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2018. (In Chinese). [Google Scholar]
- Xu, H.Q.; Wu, S.P.; Li, H.C.; Zhao, Y.C.; Lv, Y. Study on Recycling of Steel Slags Used as Coarse and Fine Aggregates in Induction Healing Asphalt Concretes. Materials 2020, 13, 889. [Google Scholar] [CrossRef]
- Liu, J.Z.; Yu, B.; Hong, Q.Z. Molecular dynamics simulation of distribution and adhesion of asphalt components on steel sla. Constr. Build. Mater. 2020, 255, 119332. [Google Scholar] [CrossRef]
- Zhou, M.K.; Xu, C.; Xiao, C. Studies on the Volumetric Stability and Mechanical Properties of Cement-Fly-Ash-Stabilized Steel Slag. Materials 2021, 14, 495. [Google Scholar] [CrossRef]
- Zeng, H.M.; Liu, Z.C.; Wang, F.Z. Effect of Accelerated Carbonation Curing on Mechanical Property and Microstructure of High Volume Steel Slag Mortar. J. Chin. Ceram. Soc. 2020, 48, 1801–1807. [Google Scholar]
- Yao, H.S.; Chen, S.J.; Chen, D.W.; Hamdy, M.N.; Hou, G.H. Study on Soundness of Steel Slag Block under Accelerated Carbonation. Bull. Chin. Ceram. Soc. 2020, 39, 187–193. [Google Scholar]
- Huo, B.B.; Li, B.L.; Chen, C.; Zhang, Y.M. Surface Etching and Early Age Hydration Mechanisms of Steel Slag Powder with Formic Acid. Constr. Build. Mater. 2021, 280, 122500. [Google Scholar] [CrossRef]
- Huo, B.B.; Li, B.L.; Chen, C.; Zhang, Y.M. Mechanism and Properties of Glacial Acetic Acid Modified Steel Slag Powder via Dry Chemical Modification Method. J. Chin. Ceram. Soc. 2021, 49, 948–954. [Google Scholar]
- Ding, Y.C.; Cheng, T.W.; Liu, P.C.; Lee, W.H. Study on the Treatment of BOF Slag to Replace Fine Aggregate in Concrete. Constr. Build. Mater. 2017, 146, 644–651. [Google Scholar] [CrossRef]
- Chen, Z.W.; Gong, Z.L.; Jiao, Y.Y.; Wang, Y.; Shi, K.; Wu, J.C. Moisture Stability Improvement of Asphalt Mixture Considering the Surface Characteristics of Steel Slag Coarse Aggregate. Constr. Build. Mater. 2020, 251, 118987. [Google Scholar] [CrossRef]
- Ma, L.L.; Xu, D.B.; Wang, S.Y.; Gu, X.Y. Expansion Inhibition of Steel Slag in Asphalt Mixture by a Surface Water Isolation Structure. Road Mater. Pavement Des. 2019, 21, 2215–2229. [Google Scholar] [CrossRef]
- Li, J.J.; Zhao, S.W.; Song, X.Q.; Ni, W.; Mao, S.L.; Du, H.H.; Zhu, S.T.; Jiang, F.X.; Zeng, H.; Deng, X.J.; et al. Carbonation Curing on Magnetically Separated Steel Slag for the Preparation of Artificial Reefs. Materials 2022, 15, 2055. [Google Scholar] [CrossRef]
- Masilamani, A.; Ramalingam, M.; Kathirvel, P.; Murali, G.; Vatin, N.L. Mechanical, Physico-Chemical and Morphological Characterization of Energy Optimised Furnace (EOF) Steel Slag as Coarse Aggregate in Concrete. Materials 2022, 15, 3079. [Google Scholar] [CrossRef]
- Du, J.; Liu, J.X.; Li, M. Determination of Free Calcium Oxide in Steel Slags by Combination of Glycol-EDTA Titrimetry and Thermogravimetry-differential Thermoanalysis (TG-DTA). Phys. Test. Chem. Anal. (Part B Chem. Anal.) 2013, 49, 961–964. [Google Scholar]
- GB/T 24175-2009; Test Method for Stability of Steel Slag. China Standards Press: Beijing, China, 2009.
- Chen, Z.W.; Xie, J.; Xiao, Y.; Chen, J.Y.; Wu, S.P. Characteristics of Bonding Behavior between Basic Oxygen Furnace Slag and Asphalt Binder. Constr. Build. Mater. 2014, 64, 60–66. [Google Scholar] [CrossRef]
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. China Standards Press: Beijing, China, 2011.
- Wang, G.; Wang, Y.; Gao, Z. Use of Steel Slag as A Granular Material: Volume Expansion Prediction and Usability Criteria. J. Hazard. Mater. 2010, 184, 555–560. [Google Scholar] [CrossRef]
- Bernard, E.; Dipayan, J. Forces of Hydration that can Cause Havoc in Concrete. Concr. Int. 2003, 25, 51–57. [Google Scholar]
- Dong, C.L. Expansion Inhibition Mechanism of Steel Slag with Hydrophobic Surface and Properties of Its Asphalt Mixture. Master’s Thesis, Southeast University, Nanjing, China, 2019. (In Chinese). [Google Scholar]
- Choi, S.Y.; Yang, E.I. An Experimental Study on Alkali Silica Reaction of Concrete Specimen Using Steel Slag as Aggregate. Appl. Sci. 2020, 10, 6699. [Google Scholar] [CrossRef]
- Gao, Z.X.; Shen, A.Q.; Zhai, C.W.; Guo, Y.C.; Yu, P. Determination of Volumetric Parameters and Impacting Mechanism of Water Stability for Steel Slag Asphalt Mixture. J. Traffic Transp. Eng. 2018, 18, 1–10. [Google Scholar]
- Dorian, P.G.; Rubén, V.M.; Margarita, H.E. Solar Photoassisted Advanced Oxidation of Synthetic Phenolic Wastewaters Using Ferrioxalate Complexes. Sol. Energy 2008, 83, 306–315. [Google Scholar]
- Ambikadevi, V.R.; Lalithambika, M. Effect of Organic Acids on Ferric Iron Removal From Iron-stained Kaolinite. Appl. Clay. Sci. 2000, 16, 133–145. [Google Scholar] [CrossRef]
- Mikhail, S.A.; Turcotte, A.M. Thermal Behaviour of Basic Oxygen Furnace Waste Slag. Thermochim. Acta. 1995, 263, 87–94. [Google Scholar] [CrossRef]
- Guo, R.X.; Wang, C.; Niu, Z.L.; Yan, F.; Xia, H.T.; Liu, X.Y. Effect of Water Erosion on the Dynamic Modulus of Steel Slag Asphalt Mixture. Bull. Chin. Ceram. Soc. 2018, 37, 166–172. [Google Scholar]
- Li, J.R.; Tang, B.M.; Liu, R.Q.; Li, C.; Chen, F. Influence of Incineration Fly Ash Granulated Particles on Water Stability of Asphalt Mixture. J. Build. Mater. 2021, 24, 1048–1053. [Google Scholar]
- Zhang, H.N.; Xu, A.J.; Cui, J.; He, D.F.; Tian, N.Y. Overview and Trend of Steel Slag Recycling and Reuse. Steelmaking 2012, 28, 74–77. [Google Scholar]
- Deng, K.; Wu, K.; Shi, H.S. Status and Progress of Resource Utilization of Steel Slag in Cement and Concrete. Res. Appl. Build. Mater. 2015, 1, 7–10, 13. [Google Scholar]
- Chen, W.; Wei, J.C.; Xu, X.Z.; Zhang, X.M.; Han, W.Y.; Yan, X.P.; Hu, G.L.; Lu, Z.Z. Study on the Optimum Steel Slag Content of SMA-13 Asphalt Mixes Based on Road Performance. Coatings 2021, 11, 1436. [Google Scholar] [CrossRef]
- Zhang, H.T.; Gong, M.Y.; Yang, B.; Yang, H.S. Comparative Study on Road Performance of Different Composite Modified Asphalt Mixtures. J. Highw. Transp. Res. Dev. 2019, 36, 1–6. [Google Scholar]
- Xie, J.G.; Yang, C.X.; Fang, X.Q.; He, Y.F.; Xu, H.D. Cooling Attribute and Road Performance of Infrared Radiation Asphalt Mixture. J. Nanjing Univ. Aeronaut. Astronaut. 2011, 43, 105–109. [Google Scholar]
- Wu, Z.M.; Gao, P.W.; Chen, D.F.; Zhang, H.B.; Chen, X.; Lin, Y.C. Effect of Chlorine Deicers on Performance of Low Temperature Crack Resistance of Asphalt Mixture. Highw. Eng. 2012, 37, 26–30. [Google Scholar]
- Gu, H.X.; Wu, Q.S.; Wu, Y.; Min, Z.A. Strength and Microstructure of Carbonated Cement- Steel Slag Composite Gelled Material. J. Mater. Sci. Eng. 2019, 37, 35–39. [Google Scholar]
- Arvaniti, E.C.; Lioliou, M.G.; Paraskeva, C.A.; Payatakes, A.C.; Ostvold, T.; Koutsoukos, P.G. Calcium Oxalate Crystallization on Concrete Heterogeneities. Chem. Eng. Res. Des. 2010, 88, 1455–1460. [Google Scholar] [CrossRef]
- Petrova, E.V.; Gvozddev, N.V.; Rashkovich, L.N. Growth and Dissolution of Calcium Oxalate Monohydrate Crystals. J. Optoelectron. Adv. M. 2004, 6, 261–268. [Google Scholar]
- Lin, R.S.; Kim, T.; Wang, X.Y.; Du, W. Potential Application of MoS2 Nanoflowers as Photocatalysts in Cement: Strength, Hydration, and Dye Degradation Properties. J. Clean. Prod. 2022, 330, 129947. [Google Scholar] [CrossRef]
- Doherty, B.; Pamplona, M.; Selvaggi, R.; Miliani, C.; Matteini, M.; Sgamellotti, A.; Brunetti, B. Efficiency and resistance of the artificial oxalate protection treatment on marble against chemical weathering—ScienceDirect. Appl. Surf. Sci. 2007, 253, 4477. [Google Scholar] [CrossRef]
- Lin, C.J.; Dai, W.J.; Li, Z.F.; Wang, Y.S. Study on the Inorganic Synthesis from Recycled Cement and Solid Waste Gypsum System: Application in Grouting Materials. Constr. Build. Mater. 2020, 251, 118930. [Google Scholar] [CrossRef]
- Gruskovnjak, A.; Lothenbach, B.; Winnefeld, F.; Figi, R.; Ko, S.C.; Adler, M.; Mader, U. Hydration Mechanisms of Super Sulphated Slag Cement. Cem. Concr. Res. 2008, 38, 983–992. [Google Scholar] [CrossRef]
- Huang, X.Q.; Zhao, X.R.; Bie, S.Q.; Yang, C.F. Hardening Performance of Phosphogypsum-Slag-Based Material. Procedia Environ. Sci. 2016, 31, 970–976. [Google Scholar] [CrossRef]
- Lin, R.S.; Wang, X.Y.; Yi, H. Effects of Cement Types and Addition of Quartz and Limestone on the Normal and Carbonation Curing of Cement Paste. Constr. Build. Mater. 2021, 305, 124799. [Google Scholar] [CrossRef]
- Lin, R.S.; Han, Y.; Wang, X.Y. Macro–Meso–Micro Experimental Studies of Calcined Clay Limestone Cement (LC3) Paste Subjected to Elevated Temperature. Cem. Concr. Compos. 2020, 116, 103871. [Google Scholar] [CrossRef]
- Zhang, X.S.; Li, H.B.; Li, S.; Ding, Y.F.; Zhang, H.B.; Tong, Y.F.; Hua, S.D. Test and Microstructural Analysis of a Steel Slag Cement-Based Material Using the Response Surface Method. Materials 2022, 15, 3114. [Google Scholar] [CrossRef]
- Podoll, R.T.; Becker, C.; Irwin, K.C. Surface Analysis by Laser Ionization of the Asphalt Aggregate Bond; March Progress Report SHRP-87-AIIR-07; SRI International: Menlo Park, CA, USA, 1991. [Google Scholar]
- Tarrer, A.R.; Wagh, V. The Effect of the Physical and Chemical Characteristics of the Aggregate on Bonding; Strategic Highway Research Program; National Research Council: Washington, DC, USA, 1991. [Google Scholar]
CaO | Fe2O3 | SiO2 | MgO | Al2O3 | P2O5 | MnO | |
---|---|---|---|---|---|---|---|
BOF Steel Slag | 43.49 | 28.36 | 12.99 | 6.75 | 2.33 | 2.17 | 1.34 |
SSD [22] | 37.57 | 27.75 | 16.35 | 6.95 | 3.21 | 2.69 | 3.56 |
EOF Steel Slag [23] | 35.28 | 26.91 | 16.69 | 9.27 | 6.2 | 1.43 | 1.88 |
Tested Parameters | Unit | BOF Steel Slag | EOF Steel Slag [23] | Natural Coarse Aggregate [23] | Technical Indicators |
---|---|---|---|---|---|
Crush Value | % | 17.8 | 8 | 6.55 | ≤26 |
Los Angeles Wear (C) | % | 16.9 | 1.16 | 8.27 | ≤28 |
Bibulous Rate | % | 1.91 | 3 | 0.8 | ≤2.0 |
Gross Volume Relative Density | g/cm3 | 3.465 | 2.86 | 2.75 | — |
Apparent Relative Density | g/cm3 | 3.586 | 3.02 | 2.886 | ≥2.60 |
Adhesiveness | level | 5 | - | - | ≥5 |
Tested Parameters | Unit | Test Value | Technical Indicators |
---|---|---|---|
Gross Volume Relative Density | g/cm3 | 2.656 | — |
Apparent Relative Density | g/cm3 | 2.724 | ≥2.45 |
Angularity (Flow Time Method) | s | 38.9 | — |
Sand Equivalent | % | 73 | ≥50 |
Unit | Test Results | Technical Indicators | ||
---|---|---|---|---|
Penetration (25 °C, 5 s, 100 g) | 0.1 mm | 53 | 40~60 | |
Penetration Index | - | 0.151 | ≥0 | |
Softening Point (Global Method) | °C | 79.5 | ≥60 | |
Ductility (5 °C) | cm | 29 | ≥20 | |
Flash Point | °C | 294.8 | ≥230 | |
Ignition Point | °C | 304.8 | - | |
Solubility | % | 99.76 | ≥99 | |
Elastic Recovery (25 °C) | % | 82 | ≥75 | |
Rotational Viscosity of Brinell (135 °C) | Pa·s | 1.73 | ≤3 | |
Density (15 °C) | g/cm3 | 1.037 | - | |
Relative Density (25 °C) | - | 1.038 | - | |
Film Heating Test (163 °C, 5 h) | Storage Stability Segregation, 48 h Softening Point Difference | °C | 2 | ≤2.5 |
Quality Change | % | −0.209 | ±1.0 | |
Penetration Ratio (25 °C) | % | 78 | ≥65 | |
Ductility (5 cm/min, 10 °C) | cm | 21 | ≥15 |
Test Item | Percentage of Mass Passing the Following Sieve (mm)/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
16 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | |
AC-13 | 100.0 | 94.7 | 68.6 | 41.6 | 28.4 | 18.5 | 15 | 10.4 | 7.8 | 5.1 |
Optimum Oilstone Ratio | Gross Volume Relative Density (g/cm3) | Void Fraction (%) | Voids in Mineral Aggregate (%) | Effective Asphalt Saturation (%) | Stability (KN) | Flow Value (mm) |
---|---|---|---|---|---|---|
Untreated (5.2%) | 3.0 | 4.3 | 17.6 | 75.6 | 20.23 | 2.7 |
Treated (4.8%) | 2.96 | 3.4 | 14.1 | 75.7 | 22.62 | 3.1 |
Free Calcium | Ca(OH)2 | f-CaO | |
---|---|---|---|
Untreated | 4.852 | 0.31 | 4.551 |
Treated | 2.848 | 0.623 | 2.225 |
CaO | Fe2O3 | SiO2 | MgO | Al2O3 | MnO | Basicity | |
---|---|---|---|---|---|---|---|
Untreated | 43.49 | 28.36 | 12.99 | 6.75 | 2.33 | 1.34 | 3.35 |
Treated | 40.26 | 25.81 | 12.54 | 6.64 | 2.23 | 1.19 | 3.21 |
Limestone | 36.27 | 4.64 | 13.29 | 1.62 | 4.59 | 1.74 | 2.73 |
Soaking Time | 0.5 h Marshall Stability (KN) | 48 h Marshall Stability (KN) | Soaking Time | 0.5 h Marshall Stability (KN) | 48 h Marshall Stability (KN) | ||
---|---|---|---|---|---|---|---|
Untreated | 0 days | 20.11 | 21.11 | Treated | 0 days | 21.81 | 22.9 |
1 day | 21.71 | 23.1 | 1 day | 20.83 | 22.23 | ||
4 days | 19.42 | 21.72 | 4 days | 19.86 | 20.98 | ||
7 days | 20.94 | 21.06 | 7 days | 19.68 | 20.67 | ||
10 days | 22.99 | 21.66 | 10 days | 20.72 | 22.16 |
Water Erosion Time | Freeze–Thaw Cycle Splitting Strength (MPa) | Unfreeze–Thaw Cycle Splitting Strength (Mpa) | Water Erosion Time | Freeze–Thaw Cycle Splitting Strength (Mpa) | Unfreeze–Thaw Cycle Splitting Strength (Mpa) | ||
---|---|---|---|---|---|---|---|
Untreated | 0 days | 2.11 | 2.20 | Treated | 0 days | 2.37 | 2.51 |
1 d | 2.05 | 2.14 | 1 day | 2.16 | 2.3 | ||
4 days | 1.73 | 1.83 | 4 days | 1.71 | 1.83 | ||
7 days | 1.77 | 1.88 | 7 days | 1.62 | 1.77 | ||
10 days | 1.71 | 1.83 | 10 days | 1.52 | 1.69 |
Ca | Fe | Si | Mg | Al | P | Mn | |
---|---|---|---|---|---|---|---|
Untreated (0 days) | 28.13 | 17.30 | 5.38 | 3.65 | 1.14 | 0.83 | 0.87 |
5 days | 27.29 | 17.04 | 5.07 | 3.50 | 1.11 | 0.83 | 0.82 |
10 days | 21.16 | 16.45 | 4.28 | 3.42 | 1.10 | 0.82 | 0.81 |
Treated (0 days) | 26.30 | 15.95 | 5.28 | 3.63 | 1.1 | 0.82 | 0.79 |
5 days | 23.84 | 14.83 | 5.26 | 3.58 | 1.09 | 0.8 | 0.7 |
10 days | 22.34 | 14.26 | 5.24 | 3.57 | 1.08 | 0.79 | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Yan, F.; Guo, R.; He, H. Study on the Performance of Steel Slag and Its Asphalt Mixture with Oxalic Acid and Water Erosion. Materials 2022, 15, 6642. https://doi.org/10.3390/ma15196642
Huang X, Yan F, Guo R, He H. Study on the Performance of Steel Slag and Its Asphalt Mixture with Oxalic Acid and Water Erosion. Materials. 2022; 15(19):6642. https://doi.org/10.3390/ma15196642
Chicago/Turabian StyleHuang, Xiaoming, Feng Yan, Rongxin Guo, and Huan He. 2022. "Study on the Performance of Steel Slag and Its Asphalt Mixture with Oxalic Acid and Water Erosion" Materials 15, no. 19: 6642. https://doi.org/10.3390/ma15196642
APA StyleHuang, X., Yan, F., Guo, R., & He, H. (2022). Study on the Performance of Steel Slag and Its Asphalt Mixture with Oxalic Acid and Water Erosion. Materials, 15(19), 6642. https://doi.org/10.3390/ma15196642