Microwave Polarization Sensing for Dielectric Materials Based on a Twisted Dual-Layer Meta-Surface
Abstract
:1. Introduction
2. Structure Design and Analysis
2.1. The Unit Cell of Twisted Dual-Layer Metasurface
2.2. Polarization State
3. Experimental Methods and Results
3.1. Measurement Method
3.2. Dielectric Matetials Preparation
3.3. Polarization Sensing
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, H.K.; Lee, D.; Lim, S. A Fluidically Tunable Metasurface Absorber for Flexible Large-Scale Wireless Ethanol Sensor Applications. Sensors 2016, 16, 1246. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Wang, Y.; Shi, Y.; Zhu, Y.; Zhang, D.; Hong, Z.; Feng, X. Significant sensing performance of an all-silicon terahertz metasurface chip for Bacillus thuringiensis Cry1Ac protein. Photon Res. 2022, 10, 740. [Google Scholar] [CrossRef]
- Su, W.; Geng, Z.; Qi, J.; Wu, H. Multi-Fano Resonances in Graphene Coated All-Dielectric Metasurface for Refractive Index Sensing with High Figure of Merits. IEEE J. Sel. Top. Quantum Electron. 2020, 27, 1–6. [Google Scholar] [CrossRef]
- Chen, X.; Fan, W.; Jiang, X.; Yan, H. High-Q Toroidal Dipole Metasurfaces Driven by Bound States in the Continuum for Ultrasensitive Terahertz Sensing. J. Light. Technol. 2021, 40, 2181–2190. [Google Scholar] [CrossRef]
- Chen, J.; Kuang, Y.; Gu, P.; Feng, S.; Zhu, Y.; Tang, C.; Guo, Y.; Liu, Z.; Gao, F. Strong Magnetic Plasmon Resonance in a Simple Metasurface for High-Quality Sensing. J. Lightwave Technol. 2021, 39, 4525–4528. [Google Scholar] [CrossRef]
- Yan, S.; Vandenbosch, G.A.E. Compact circular polarizer based on chiral twisted double split-ring resonator. Appl. Phys. Lett. 2013, 102, 103503. [Google Scholar] [CrossRef]
- Yan, S.; Vandenbosch, G.A.E. Chiral structure based on bi-layered displaced U pair. EPL 2013, 103, 18002. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Bui, T.S.; Yan, S.; VandenBosch, G.A.E.; Lievens, P.; Vu, L.D.; Janssens, E. Broadband negative refractive index obtained by plasmonic hybridization in metamaterials. Appl. Phys. Lett. 2016, 109, 221902. [Google Scholar] [CrossRef]
- Fernandez, O.; Gomez, A.; Basterrechea, J.; Vegas, A. Reciprocal Circular Polarization Handedness Conversion Using Chiral Metamaterials. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2307–2310. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhong, C.; Fan, F.; Liu, G.; Chang, S. Terahertz polarization and chirality sensing for amino acid solution based on chiral metasurface sen-sor. Sens. Actuators B Chem. 2021, 330, 129315. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Fan, F.; Li, T.-F.; Ji, Y.-Y.; Chang, S.-J. Terahertz polarization conversion and sensing with double-layer chiral metasurface. Chin. Phys. B 2020, 29, 078707. [Google Scholar] [CrossRef]
- Singh, R.; Plum, E.; Menzel, C.; Rockstuhl, C.; Azad, A.; Cheville, R.A.; Lederer, F.; Zhang, W.; Zheludev, N. Terahertz metamaterial with asymmetric transmission. Phys. Rev. B 2009, 80, 153104. [Google Scholar] [CrossRef]
- Zhang, Z.; Fan, F.; Shi, W.; Zhang, T.; Chang, S. Terahertz circular polarization sensing for protein denaturation based on a twisted dual-layer metasurface. Biomed. Opt. Express 2022, 13, 209. [Google Scholar] [CrossRef] [PubMed]
- Morales-Lovera, H.-N.; Olvera-Cervantes, J.-L.; Corona-Chavez, A.; Kataria, T.K. Dielectric Anisotropy Sensor Using Coupled Resonators. IEEE Trans. Microw. Theory Tech. 2020, 68, 1610–1616. [Google Scholar] [CrossRef]
- Saadat-Safa, M.; Nayyeri, V.; Khanjarian, M.; Soleimani, M.; Ramahi, O.M. A CSRR-Based Sensor for Full Characterization of Magneto-Dielectric Materials. IEEE Trans. Microw. Theory Tech. 2019, 67, 806–814. [Google Scholar] [CrossRef]
- Fu, C.; Sun, Z.; Han, L.; Liu, C. Dual-Bandwidth Linear Polarization Converter Based on Anisotropic Metasurface. IEEE Photonics J. 2020, 12, 1–11. [Google Scholar] [CrossRef]
- Barrera, J.D.; Huff, G. Analysis of a Variable SIW Resonator Enabled by Dielectric Material Perturbations and Applications. IEEE Trans. Microw. Theory Tech. 2013, 61, 225–233. [Google Scholar] [CrossRef]
- Sihvola, A. Electromagnetic Mixing Formulas and Applications; IEE Press: London, UK, 1999. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, H.; Yan, S.; Chen, J. Microwave Polarization Sensing for Dielectric Materials Based on a Twisted Dual-Layer Meta-Surface. Materials 2022, 15, 6655. https://doi.org/10.3390/ma15196655
Xiao H, Yan S, Chen J. Microwave Polarization Sensing for Dielectric Materials Based on a Twisted Dual-Layer Meta-Surface. Materials. 2022; 15(19):6655. https://doi.org/10.3390/ma15196655
Chicago/Turabian StyleXiao, Hong, Sen Yan, and Juan Chen. 2022. "Microwave Polarization Sensing for Dielectric Materials Based on a Twisted Dual-Layer Meta-Surface" Materials 15, no. 19: 6655. https://doi.org/10.3390/ma15196655
APA StyleXiao, H., Yan, S., & Chen, J. (2022). Microwave Polarization Sensing for Dielectric Materials Based on a Twisted Dual-Layer Meta-Surface. Materials, 15(19), 6655. https://doi.org/10.3390/ma15196655