Generation of 99.8 fs, 25 kW Peak-Power, Dispersion-Managed Pulses Directly from an Yb-Doped Figure-of-9 Fiber Laser
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Russbueldt, P.; Mans, T.; Weitenberg, J.; Hoffmann, H.D.; Poprawe, R. Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier. Opt. Lett. 2010, 35, 4169–4171. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.; Aleshire, C.; Klenke, A.; Haddad, E.; Légaré, F.; Tünnermann, A.; Limpert, J. 10.4 kW coherently combined ultrafast fiber laser. Opt. Lett. 2020, 45, 3083–3086. [Google Scholar] [CrossRef]
- Aguergaray, C.; Broderick, N.; Erkintalo, M.; Chen, J.; Kruglov, V. Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror. Opt. Express 2012, 20, 10545. [Google Scholar] [CrossRef]
- Liu, W.; Shi, H.; Cui, J.; Xie, C.; Song, Y.; Wang, C.; Hu, M. Single-polarization large-mode-area fiber laser mode-locked with a nonlinear amplifying loop mirror. Opt. Lett 2018, 43, 2848–2851. [Google Scholar] [CrossRef]
- Nicholson, J.W.; Andrejco, M. A polarization maintaining, dispersion managed, femtosecond figure-eight fiber laser. Opt. Express 2006, 14, 8160. [Google Scholar] [CrossRef]
- Xu, B.; Martinez, A.; Set, S.Y.; Goh, C.S. Polarization Maintaining, Nanotube-Based Mode-Locked Lasing From Figure of Eight Fiber Laser. IEEE Photonics Technol. Lett. 2014, 26, 180–182. [Google Scholar] [CrossRef]
- Bowen, P.; Erkintalo, M.; Provo, R.; Harvey, J.D.; Broderick, N. Mode-locked Yb-doped fiber laser emitting broadband pulses at ultralow repetition rates. Opt. Lett. 2016, 41, 5270. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Hao, T.; Huibo, W.; Lina, W.; Jiangfeng, Z.; Shaobo, F.; Guoqing, C.; Junli, W.; Zhiyi, W. Highly-stable mode-locked PM Yb-fiber laser with 10 nJ in 93-fs at 6 MHz using NALM. Opt. Express 2018, 26, 10428. [Google Scholar]
- Jiang, T.; Cui, Y.; Lu, P.; Li, C.; Wang, A.; Zhang, Z. All PM Fiber Laser Mode Locked With a Compact Phase Biased Amplifier Loop Mirror. IEEE Photonics Technol. Lett. 2016, 28, 1786–1789. [Google Scholar] [CrossRef]
- Kuse, N.; Jiang, J.; Lee, C.C.; Schibli, T.R.; Fermann, M.E. All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror. Opt. Express 2016, 24, 3095–3102. [Google Scholar] [CrossRef] [Green Version]
- Hänsel, W.; Hoogland, H.; Giunta, M.; Schmid, S.; Steinmetz, T.; Doubek, R.; Mayer, P.; Dobner, S.; Cleff, C.; Fischer, M.; et al. All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation. Appl. Phys. B 2017, 123, 41. [Google Scholar] [CrossRef]
- Hong, L.; Donald, D.K.; Sorin, W.V. Optimizing polarization states in a figure-8 laser using a nonreciprocal phase shifter. J. Lightwave Technol. 1994, 12, 1121–1128. [Google Scholar] [CrossRef]
- Edelmann, M.; Hua, Y.; Koch, A.; Kärtner, F.X. Generation of 64 fs, 10 kW peak-power, transform-limited pulses directly from an Yb-doped Figure-9 fiber laser. In Proceedings of the CLEO: Science and Innovations 2020, Washington, DC, USA, 10–15 May 2020. [Google Scholar]
- Chu, H.; Zhao, S.; Li, G.; Li, M.; Li, D. Mode-locked femtosecond polarization-maintaining Yb-doped fiber laser with a figure-nine configuration. Opt. Commun. 2021, 482, 126595. [Google Scholar] [CrossRef]
- Lan, Y.; Song, Y.; Hu, M.; Liu, B.; Chai, L.; Wang, C. Enhanced spectral breathing for sub-25 fs pulse generation in a Yb-fiber laser. Opt. Lett. 2013, 38, 1292–1294. [Google Scholar] [CrossRef] [PubMed]
- Mortag, D.; Wandt, D.; Morgner, U.; Kracht, D.; Neumann, J. Sub-80-fs pulses from an all-fiber-integrated dissipative-soliton laser at 1 µm. Opt. Express 2011, 19, 546–551. [Google Scholar] [CrossRef]
- Kieu, K.; Renninger, W.H.; Chong, A.; Wise, F.W. Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser. Opt. Lett. 2009, 34, 593–595. [Google Scholar] [CrossRef] [Green Version]
- Chi, H.; Liu, B.; Song, Y.; Hu, M.; Chai, L.; Shen, W.; Liu, X.; Wang, C. Nonlinearity optimization of dissipative-soliton fiber laser for generation of pulses with 350 kW peak power. High Power Laser Sci. Eng. 2018, 6, e27. [Google Scholar] [CrossRef] [Green Version]
- Yatsu, R.; Taira, K.; Tsuchiya, M. High-quality sub-100-fs optical pulse generation by fiber-optic soliton compression of gain-switched distributed-feedback laser-diode pulses in conjunction with nonlinear optical fiber loops. Opt. Lett. 1999, 24, 1172–1174. [Google Scholar] [CrossRef]
- Luo, D.; Li, W.; Liu, Y.; Wang, C.; Zhu, Z.; Zhang, W.; Zeng, H. High-power self-similar amplification seeded by a 1 GHz harmonically mode-locked Yb-fiber laser. Appl. Phys. Express 2016, 9, 082702. [Google Scholar] [CrossRef]
- Daniault, L.; Hanna, M.; Papadopoulos, D.N.; Zaouter, Y.; Mottay, E.; Druon, F.; Georges, P. High peak-power stretcher-free femtosecond fiber amplifier using passive spatio-temporal coherent combining. Opt. Express 2012, 20, 21627–21634. [Google Scholar] [CrossRef] [Green Version]
- Mok, J.T.; Littler, I.C.M.; Tsoy, E.; Eggleton, B.J. Soliton compression and pulse-train generation by use of microchip Q-switched pulses in Bragg gratings. Opt. Lett. 2005, 30, 2457–2459. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; El-Damak, A.R.; Feng, Y.; Gu, X. Experimental and numerical studies of mode-locked fiber laser with large normal and anomalous dispersion. Opt. Express 2013, 21, 12014–12021. [Google Scholar] [CrossRef] [PubMed]
- Treacy, E. Optical pulse compression with diffraction gratings. IEEE J. Quantum Electron. 1969, 5, 454–458. [Google Scholar] [CrossRef]
- Wang, L.; Xu, P.; Li, Y.; Han, J.; Guo, X.; Cui, Y.; Liu, X.; Tong, L. Femtosecond Mode-locked Fiber Laser at 1 μm Via Optical Microfiber Dispersion Management. Sci. Rep. 2018, 8, 4732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Wang, A.; Zhang, Z. 84-fs 500-MHz Yb:Fiber-Based Laser Oscillator Mode Locked by Biased NALM. IEEE Photonics Technol. Lett. 2017, 29, 2055–2058. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, X.; Wang, A.; Chang, G.; Kartner, F.; Zhang, Z. Robust 700 MHz mode-locked Yb:Fiber laser with a biased nonlinear amplifying loop mirror. Opt. Express 2018, 26, 26003. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Peng, Z.; Cheng, Z.; Xia, T.; Zhao, H.; Wan, S.; Wang, P. All-Fiber Polarization-Maintaining Dispersion-Managed Figure-of-9 Mode-Locked Laser. IEEE Photonics Technol. Lett. 2022, 34, 251–254. [Google Scholar] [CrossRef]
- Guo, Z.; Hao, Q.; Yang, S.; Liu, T.; Hu, H.; Zeng, H. Octave-Spanning Supercontinuum Generation From an NALM Mode-Locked Yb-Fiber Laser System. IEEE Photonics J. 2017, 9, 1–7. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, S.; Si, L.; Chen, J.; Chen, J.; Yu, H. Generation of 99.8 fs, 25 kW Peak-Power, Dispersion-Managed Pulses Directly from an Yb-Doped Figure-of-9 Fiber Laser. Materials 2022, 15, 7038. https://doi.org/10.3390/ma15197038
Yuan S, Si L, Chen J, Chen J, Yu H. Generation of 99.8 fs, 25 kW Peak-Power, Dispersion-Managed Pulses Directly from an Yb-Doped Figure-of-9 Fiber Laser. Materials. 2022; 15(19):7038. https://doi.org/10.3390/ma15197038
Chicago/Turabian StyleYuan, Shuai, Lu Si, Jianing Chen, Junyu Chen, and Han Yu. 2022. "Generation of 99.8 fs, 25 kW Peak-Power, Dispersion-Managed Pulses Directly from an Yb-Doped Figure-of-9 Fiber Laser" Materials 15, no. 19: 7038. https://doi.org/10.3390/ma15197038
APA StyleYuan, S., Si, L., Chen, J., Chen, J., & Yu, H. (2022). Generation of 99.8 fs, 25 kW Peak-Power, Dispersion-Managed Pulses Directly from an Yb-Doped Figure-of-9 Fiber Laser. Materials, 15(19), 7038. https://doi.org/10.3390/ma15197038