Physicomechanical and Antimicrobial Characteristics of Cement Composites with Selected Nano-Sized Oxides and Binary Oxide Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physicochemical and Dispersive-Microstructure Characteristics
2.2.1. Fourier Transform Infrared Spectroscopy (FTIR)
2.2.2. Energy Dispersive X-ray Fluorescence (EDXRF)
2.2.3. Scanning Electron Microscopy (SEM) and Particle Size Analysis
2.2.4. Porous Structure Properties
2.2.5. Zeta Potential Analysis
2.3. Preparation of Cement Composites
2.4. Characterization of Cement Composites
2.4.1. Determination of the Consistency of Fresh Cement Mortar
2.4.2. Determination of the Density
2.4.3. Compressive and Flexural Strength Tests
2.5. Assessment of Antibacterial Properties
3. Results and Discussion
3.1. Physicochemical and Dispersive-Microstructure Characteristics of Pristine Oxides
3.1.1. FTIR Spectroscopy
3.1.2. Energy Dispersive X-ray Fluorescence
3.1.3. Scanning Electron Microscopy and Particle Size Analysis
3.1.4. Porous Structure Properties
3.1.5. Electrokinetic Properties
3.2. Analysis of Cement Composites
3.3. Assessment of Antibacterial Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Onaizi, A.M.; Huseien, G.F.; Lim, N.H.A.S.; Amran, M.; Samadi, M. Effect of nanomaterials inclusion on sustainability of cement-based concrete: A comprehensive review. Constr. Build. Mater. 2021, 306, 124850. [Google Scholar] [CrossRef]
- Sanchez, F.; Sobolev, K. Nanotechnology in concrete—A review. Constr. Build. Mater. 2010, 24, 2060–2071. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Jalali, S. Nanotechnology: Advantages and drawbacks in the field of construction and building materials. Constr. Build. Mater. 2011, 25, 582–590. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.; Guan, X.; Li, H.; Ou, J. Effect of the specific surface area of nano-silica particle on the properties of cement paste. Powder Techol. 2021, 392, 680–689. [Google Scholar] [CrossRef]
- Sobolev, K. Modern developments related to nanotechnology and nanoengineering of concrete. Front. Struct. Civ. Eng. 2016, 10, 131–141. [Google Scholar] [CrossRef]
- He, R.; Yang, Z.; Gan, V.J.L.; Chen, H.; Cao, D. Mechanism of nano-silica to enhance the robustness and durability of concrete in low air pressure for sustainable civil infrastructures. J. Clean. Prod. 2021, 321, 128783. [Google Scholar] [CrossRef]
- Mostafa, S.A.; El-Deeb, M.M.; Farghali, A.A.; Faried, A.S. Evaluation of the nano silica and nano waste materials on the corrosion protection of high strength steel embedded in ultra-high performance concrete. Sci. Rep. 2021, 11, 2617. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, L.; Liu, Z.; He, F.; Zheng, K. Effect of transitional aluminas on Portland cement hydration, phase assemblage and the correlation to ASR preventing effectiveness. Cem. Concr. Res. 2022, 151, 106622. [Google Scholar] [CrossRef]
- Feng, H.; Lv, L.; Pang, Y.; Yuan, C.; Chu, L.; Zhao, X. Bond behavior between the nano-Al2O3-water-glass-modified magnesium-phosphate-cement mortar and steel fiber. Const. Build. Mater. 2021, 306, 124814. [Google Scholar] [CrossRef]
- Zhou, J.; Zheng, K.; Liu, Z.; He, F. Chemical effect of nano-alumina on early-age hydration of Portland cement. Cem. Concr. Res. 2019, 116, 159–167. [Google Scholar] [CrossRef]
- Joshaghani, A.; Balapour, M.; Mashhadian, M.; Ozbakkaloglu, T. Effects of nano-TiO2, nano-Al2O3, and nano-Fe2O3 on rheology, mechanical and durability properties of self-consolidating concrete (SCC): An experimental study. Constr. Build. Mater. 2020, 245, 118444. [Google Scholar] [CrossRef]
- Praveenkumar, T.R.; Vijayalakshmi, M.M.; Meddah, M.S. Strengths and durability performances of blended cement concrete with TiO2 nanoparticles and rice husk ash. Constr. Build. Mater. 2019, 217, 343–351. [Google Scholar] [CrossRef]
- Mesbahi, A.; Ghiasi, H. Sheilding properties of the ordinary concrete loaded with micro- and nano-particles against neutron and gamma radiations. Appl. Radiat. Isot. 2018, 136, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Reales, O.A.M.; Filho, R.D.T. A review on the chemical, mechanical and microstructural characterization of carbon nanotubes-cement based composites. Constr. Build. Mater. 2017, 154, 697–710. [Google Scholar] [CrossRef]
- Carrico, A.; Bogas, J.A.; Hawreen, A.; Guedes, M. Durability of multi-walled carbon nanotube reinforced concrete. Constr. Build. Mater. 2018, 164, 121–133. [Google Scholar] [CrossRef]
- Shi, T.; Li, Z.; Guo, J.; Gong, H.; Gu, C. Research progress on CNTs/CNFs-modified cement-based composites—A review. Constr. Build. Mater. 2019, 202, 290–307. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, C.; Li, W.; Chen, S.; Korayem, A.H.; Duan, W. Using graphene oxide to improve physical property and control ASR expansion of cement mortar. Constr. Build. Mater. 2021, 307, 125006. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; You, I.; Lee, S.-J. Electrical properties of cement-based composites with carbon nanotubes, graphene and graphite nanofibers. Sensors 2017, 17, 1064. [Google Scholar] [CrossRef]
- Hamidi, F.; Aslani, F. TiO2-based photocatalytic cementitious composites: Materials, properties, influential parameters, and assessment techniques. Nanomaterials 2019, 9, 1444. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Zhao, S.; Jung, D.; Cha, B.J.; Saqlain, S.; Choe, H.; Hwang, C.-C.; Kim, Y.D. Visible light responsive rutile TiO2 photocatalysts mixed with cement: Enhancement effect driven by TiO2/cement interfaces. Appl. Surf. Sci. 2021, 570, 151136. [Google Scholar] [CrossRef]
- Idrees, M.; Saeed, F.; Amin, A.; Hussain, T. Improvement in compressive strength of styrene-butadiene-rubber (SBR) modified mortars by using powder form and nanoparticles. J. Build. Eng. 2021, 44, 102651. [Google Scholar] [CrossRef]
- Tyukavkina, V.V.; Shchelokova, E.A.; Tsyryatyeva, A.V.; Kasikov, A.G. TiO2-SiO2 nanocomposites from technological wastes for self-cleaning cement composition. J. Build. Eng. 2021, 44, 102648. [Google Scholar] [CrossRef]
- Dezhampanah, S.; Nikbin, I.M.; Mehdipour, S.; Mohebbi, R.; Moghadam, H. Fiber-reinforced concrete containing nano–TiO2 as a new gamma-ray radiation shielding materials. J. Build. Eng. 2021, 44, 102542. [Google Scholar] [CrossRef]
- Nikbin, I.M.; Mohebbi, R.; Dezhampanah, S.; Mehdipour, S.; Mohammadi, R.; Nejat, T. Gamma ray shielding properties of heavy-weight concrete containing nano-TiO2. Radiat. Phys. Chem. 2019, 162, 157–167. [Google Scholar]
- Janczarek, M.; Klapiszewski, Ł.; Jędrzejczak, P.; Klapiszewska, I.; Ślosarczyk, A.; Jesionowski, T. Progress of functionalized TiO2-based nanomaterials in the construction industry: A comprehensive review. Chem. Eng. J. 2022, 430, 132062. [Google Scholar] [CrossRef]
- Dubosc, A.; Escadeillas, G.; Blanc, P.J. Characterization of biological stains on external concrete walls and influence of concrete as underlying material. Cem. Concr. Res. 2001, 31, 1613–1617. [Google Scholar] [CrossRef]
- Banerjee, S.; Dionysiou, D.D.; Pillai, S.C. Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl. Catal. B 2015, 176-177, 396–428. [Google Scholar] [CrossRef] [Green Version]
- Qiu, L.; Dong, S.; Ashour, A.; Han, B. Antibacterial concrete for smart and durable infrastructures: A review. Constr. Build. Mater. 2020, 260, 120456. [Google Scholar] [CrossRef] [PubMed]
- Vavouraki, A.I.; Gounaki, I.; Venieri, D. Properties of inorganic polymers based on ground waste concrete containing CuO and ZnO nanoparticles. Polymers 2021, 13, 2871. [Google Scholar] [CrossRef]
- Klapiszewska, I.; Parus, A.; Ławniczak, Ł.; Jesionowski, T.; Klapiszewski, Ł.; Ślosarczyk, A. Production of anitbacterial cement composites containing ZnO/lignin and ZnO-SiO2/lignin hybrid admixtures. Cem. Concr. Compos. 2021, 124, 104250. [Google Scholar] [CrossRef]
- Oltulu, M.; Şahin, R. Single and combined effects of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume. Mater. Sci. Eng. A 2011, 528, 7012–7019. [Google Scholar] [CrossRef]
- Oltulu, M.; Şahin, R. Effect of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary water absorption of cement mortar containing fly ash: A comparative study. Energy Build. 2013, 58, 292–301. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standard Institute. M100S, Performance Standards for Antimicrobial Susceptibility Testing, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically: Approved Standard, 26th ed.; Clinical and Laboratory Standard Institute: Malvern, PA, USA, 2016. [Google Scholar]
- Esteban-Tejeda, L.; Prado, C.; Cabal, B.; Sanz, J.; Torrecillas, R.; Moya, J.S. Antibacterial and antifungal activity of ZnO containing glasses. PLoS ONE 2015, 10, e0132709. [Google Scholar] [CrossRef] [PubMed]
- Jo, W.-K.; Natarajan, T.S. Influence of TiO2 morphology on the photocatalytic efficiency of direct Z-scheme g-C3N4/TiO2 photocatalysts for isoniazid degradation. Chem. Eng. J. 2015, 281, 549–565. [Google Scholar] [CrossRef]
- León, A.; Reuquen, P.; Garin, C.; Segura, R.; Vargas, P.; Zapata, P.; Orihuela, P.A. FTIR and Raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Appl. Sci. 2017, 7, 49. [Google Scholar] [CrossRef]
- Figiela, M.; Wysokowski, M.; Galinski, M.; Jesionowski, T.; Stepniak, I. Synthesis and characterization of novel copper oxide-chitosan nanocomposites for non-enzymatic glucose sensins. Sens. Actuators B Chem. 2018, 272, 296–307. [Google Scholar] [CrossRef]
- Fakhar-e-Alam, M.; Shafiq, Z.; Mahmood, A.; Atif, M.; Anwar, H.; Hanif, A.; Yaqub, N.; Farooq, W.A.; Fatehmulla, A.; Ahman, S.; et al. Assessment of green and chemically synthesized copper oxide nanoparticles against hepatocellular carcinoma. J. King Saud Univ. Sci. 2021, 33, 101669. [Google Scholar] [CrossRef]
- Ethiraj, A.S.; Kang, D.J. Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res. Lett. 2012, 7, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siwińska-Ciesielczyk, K.; Andrzejczak, A.; Paukszta, D.; Piasecki, A.; Moszyński, D.; Zgoła-Grześkowiak, A.; Jesionowski, T. Synthesis of selected mixed oxide materials with tailored photocatalytic activity in the degradation of tetracycline. Materials 2021, 14, 5361. [Google Scholar] [CrossRef]
- Punnoose, A.; Dodge, K.; Rasmussen, J.W.; Chess, J.; Wingett, D.; Anders, C. Cytotoxicity of ZnO nanoparticles can be tailored by modyfing their surface structure: A green chemistry approach for safer nanomaterials. ACS Sustain. Chem. Eng. 2014, 2, 1666–1673. [Google Scholar] [CrossRef] [PubMed]
- Ogunyemi, S.O.; Abdallah, Y.; Zhang, M.; Fouad, H.; Hong, X.; Ibrahim, E.; Masum, M.I.; Hossain, A.; Mo, J.; Li, B. Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artif. Cells Nanomed. Biotechnol. 2019, 47, 341–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melquiades, F.L.; Ferreira, D.D.; Appoloni, C.R.; Lopes, F.; Lonni, A.G.; Oliveira, F.M.; Duarte, J.C. Titanium dioxide determination in sunscreen by energy dispersive X-ray fluorescence methodology. Anal. Chim. Acta 2008, 613, 135–143. [Google Scholar] [CrossRef]
- Dakhel, A.A. Critical role of hydrogenation for creation of magnetic Cd-Cu co-incorporated TiO2 nanocrystallites. Appl. Phys. A 2020, 126, 41. [Google Scholar] [CrossRef]
- El-Hilo, M.; Dakhel, A.A.; Ali-Mohamed, A.Y. Room temperature ferromagnetism in nanocrystalline Ni-doped ZnO synthesized by co-precipitation. J. Magn. Magn. Mater. 2009, 321, 2279–2283. [Google Scholar] [CrossRef]
- Akyuz, S.; Akyuz, T.; Emre, G.; Gulec, A.; Basaran, S. Pigment analyses of a portrait and paint box of Turkish artist Feyhaman Duran (1886–1970): The EDXRF, FT-IR and micro Raman spectroscopic studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 89, 74–81. [Google Scholar] [CrossRef]
- Alswat, A.A.; Ahmad, M.B.; Hussein, M.Z.; Ibrahim, N.A.; Saleh, T.A. Copper oxide nanoparticles-loaded zeolite and its characteristics and antibacterial activities. J. Mater. Sci. Technol. 2017, 33, 889–896. [Google Scholar] [CrossRef]
- De Almeida, E.; Duran, N.M.; Gomes, M.H.F.; Savassa, S.M.; da Cruz, T.N.M.; Migliavacca, R.A.; Pereira de Carvalho, H.W. EDXRF for elemental determination of nanoparticle-related agricultural samples. X-ray Spectrom. 2019, 48, 151–161. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, L.; Guo, J. Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Appl. Catal. B 2000, 26, 207–215. [Google Scholar] [CrossRef]
- Karaolia, P.; Michael-Kordatou, I.; Hapeshi, E.; Drosou, C.; Bertakis, Y.; Christofilos, D.; Armatas, G.S.; Sygellou, L.; Schwartz, T.; Xekoukoulotakis, N.P.; et al. Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters. Appl. Catal. B 2018, 224, 810–824. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmed, E.; Hong, Z.L.; Ahmed, W.; Elhissi, A.; Khalid, N.R. Photocatalytic, sonocatalytic and sonophotocatalytic degradation of rhodamine B using ZnO/CNTs composites photocatalysts. Ultrason. Sonochem. 2014, 21, 761–773. [Google Scholar] [CrossRef]
- Raoufi, D. Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renew. Energ. 2013, 50, 932–937. [Google Scholar] [CrossRef]
- Ren, G.; Hu, D.; Cheng, E.W.C.; Vargas-Reus, M.A.; Reip, P.; Allaker, R.P. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents 2009, 33, 587–590. [Google Scholar] [CrossRef]
- Jiang, J.; Oberdörster, G.; Biswas, P. Characterization of size, surface charge, and agglomeration state of nanoparticles dispersions for toxicological studies. J. Nanopart. Res. 2009, 11, 77–89. [Google Scholar] [CrossRef]
- Suttiponparnit, K.; Jiang, J.; Sahu, M.; Suvachittanont, S.; Charinpanitkul, T.; Biswas, P. Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res. Lett. 2011, 6, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Trass, A.; El-Shamy, H.; El-Mehasseb, I.; El-Kemary, M. CuO nanoparticles: Synthesis, characterization, optical properties and interaction with amino acids. Appl. Surf. Sci. 2012, 258, 2997–3001. [Google Scholar] [CrossRef]
- Ananth, A.; Dharaneedharan, S.; Heo, M.-S.; Mok, Y.S. Copper oxide nanomaterials: Synthesis, characterization and structure-specific antibacterial performance. Chem. Eng. J. 2015, 262, 179–188. [Google Scholar] [CrossRef]
- Duman, F.; Ocsoy, I.; Kup, F.O. Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties. Mater. Sci. Eng. C 2016, 60, 333–338. [Google Scholar] [CrossRef]
- Berg, J.M.; Romoser, A.; Banerjee, N.; Zebda, R.; Sayes, C.M. The relationship between pH and zeta potential of ~ 30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations. Nanotoxicology 2009, 3, 276–283. [Google Scholar] [CrossRef]
- Lucas, S.S.; Ferreira, V.M.; de Aguiar, J.L.B. Incorporation of titanium dioxide nanoparticles in mortars—Influence of microstructure in the hardened state properties and photocatalytic activity. Cem. Concr. Res. 2013, 43, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Li, H.; Mei, J.; Li, X.; Chen, F. Effects of nano-TiO2 on the toughness and durability of cement-based material. Adv. Mater. Sci. Eng. 2015, 2015, 583106. [Google Scholar] [CrossRef] [Green Version]
- Jalal, M.; Fathi, M.; Farzad, M. Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self compacting concrete. Mech. Mater. 2013, 61, 11–27. [Google Scholar] [CrossRef]
- Feng, L.C.; Gong, C.W.; Wu, Y.P.; Feng, D.C.; Xie, N. The study on mechanical properties and microstructure of cement paste with nano-TiO2. Adv. Mater. Res. 2013, 629, 477–481. [Google Scholar] [CrossRef]
- Feng, D.; Xie, N.; Gong, C.; Leng, Z.; Xiao, H.; Li, H.; Shi, X. Portland cement paste modified by TiO2 nanoparticles: A microstructure perspective. Ind. Eng. Chem. Res. 2013, 52, 11575–11582. [Google Scholar] [CrossRef]
- Essawy, A.A.; Abd El Aleem, S. Physico-mechanical properties, potent adsorptive and photocatalytic efficacies of sulfate resisting cement blends containing micro silica and nano-TiO2. Constr. Build. Mater. 2014, 52, 1–8. [Google Scholar] [CrossRef]
- Liu, M.; Xiao, H.; Liu, J. Dispersion characteristics of various contents of nano-TiO2 and its effect on the properties of cement-based composite. Struct. Concr. 2018, 19, 1301–1308. [Google Scholar] [CrossRef]
- Malekhoseini, Z.; Rezvani, M.B.; Niakan, M.; Atai, M.; Bassir, M.M.; Alizade, H.S.; Siabani, S. Effect of zinc oxide nanoparticles on physical and antimicrobial properties of resin-modified glass ionomer cement. Dent. Res. J. 2021, 18, 73. [Google Scholar]
- Lv, Y.; Chen, Y.; Zheng, Y.; Li, Q.; Lei, T.; Yin, P. Evaluation of the antibacterial properties and in-vitro cell compatibilities of doped copper oxide/hydroxyapatite composites. Colloid. Surf. B 2021, 209, 112194. [Google Scholar] [CrossRef]
- Azizi-Lalabadi, M.; Ehsani, A.; Divband, B.; Alizadeh-Sani, M. Antimicrobial activity of Titanium dioxide and Zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Sci. Rep. 2019, 9, 17439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besinis, A.; De Peralta, T.; Handy, R.D. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 2014, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Sikora, P.; Augustyniak, A.; Cendrowski, K.; Horszczaruk, E.; Rucinska, T.; Nawrotek, P.; Mijowska, E. Characterization of mechanical and bactericidal properties of cement mortars containing waste glass aggregate and nanomaterials. Materials 2016, 9, 701. [Google Scholar] [CrossRef] [Green Version]
- Dadi, R.; Azouani, R.; Traore, M.; Mielcarek, C.; Kanaev, A. Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains. Mater. Sci. Eng. C 2019, 104, 109968. [Google Scholar] [CrossRef]
- Federici, G.; Shaw, B.J.; Handy, R.D. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquat. Toxicol. 2007, 84, 415–430. [Google Scholar] [CrossRef] [PubMed]
- Cupi, D.; Hartmann, N.B.; Baun, A. The influence of natural organic matter and aging on suspension stability in guideline toxicity testing of silver, zinc oxide, and titanium dioxide nanoparticles with Daphnia magna. Environ. Toxicol. Chem. 2015, 34, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikora, P.; Augustyniak, A.; Cendrowski, K.; Nawrotek, P.; Mijowska, E. Antimicrobial activity of Al2O3, CuO, Fe3O4, and ZnO nanoparticles in scope of their further application in cement-based building materials. Nanomaterials 2018, 8, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Name | Quantities of Ingredients Used in the Preparation of Cement Composites | |||||
---|---|---|---|---|---|---|
Cement [g] | Water [mL] | Aggregate [g] | ZnO [g] | CuO [g] | TiO2 [g] | |
clean mortar cement | 450 | 225 | 1350 | - | - | - |
ZnO (0.1%) | 0.45 | - | - | |||
ZnO (0.3%) | 1.35 | - | - | |||
CuO (0.5%) | - | 2.25 | - | |||
TiO2 (1.0%) | - | - | 4.50 | |||
TiO2 (2.0%) | - | - | 9.00 | |||
ZnO (0.1%) + CuO (0.5%) | 0.45 | 2.25 | - | |||
ZnO (0.3%) + CuO (0.5%) | 1.35 | 2.25 | - | |||
TiO2 (1.0%) + CuO (0.5%) | - | 2.25 | 4.50 | |||
TiO2 (2.0%) + CuO (0.5%) | - | 2.25 | 9.00 |
Sample | Dispersive Properties | Porous Structure | |||
---|---|---|---|---|---|
Particle Size Distribution from Zetasizer Nano ZS (nm) | PdI | BET Surface Area (m2/g) | Total Volume of Pores (cm3/g) | Mean Size of Pores (nm) | |
ZnO | 142–712 | 0.139 | 13 | 0.005 | 2.2 |
CuO | 220–1484 | 0.140 | 13 | 0.005 | 2.2 |
TiO2 | 190–396 | 0.788 | 53 | 0.020 | 2.2 |
Sample | Consistency (mm) | Flexural Strength (MPa) | Density (g/cm3) | ||
---|---|---|---|---|---|
After 3 Days | After 28 Days | After 3 Days | After 28 Days | ||
clean cement mortar | 135.0 ± 5.0 | 4.5 ± 0.4 | 7.0 ± 0.1 | 2.31 ± 0.02 | 2.36 ± 0.01 |
ZnO (0.1%) | 134.3 ± 5.8 | 4.7 ± 0.1 | 7.7 ± 0.4 | 2.28 ± 0.01 | 2.32 ± 0.01 |
ZnO (0.3%) | 127.8 ± 3.7 | 2.9 ± 0.2 | 6.8 ± 0.1 | 2.20 ± 0.01 | 2.23 ± 0.01 |
CuO (0.5%) | 138.5 ± 3.0 | 4.2 ± 0.4 | 6.6 ± 0.1 | 2.28 ± 0.02 | 2.28 ± 0.02 |
TiO2 (1.0%) | 146.5 ± 1.7 | 4.8 ± 0.1 | 8.5 ± 0.2 | 2.28 ± 0.01 | 2.39 ± 0.02 |
TiO2 (2.0%) | 136.0 ± 4.0 | 4.4 ± 0.2 | 7.2 ± 0.2 | 2.31 ± 0.03 | 2.36 ± 0.04 |
ZnO (0.1%) + CuO (0.5%) | 126.8 ± 1.9 | 4.1 ± 0.1 | 6.6 ± 0.4 | 2.22 ± 0.02 | 2.28 ± 0.03 |
ZnO (0.3%) + CuO (0.5%) | 131.0 ± 10.7 | 2.6 ± 0.1 | 7.3 ± 0.1 | 2.20 ± 0.01 | 2.25 ± 0.03 |
TiO2 (1.0%) + CuO (0.5%) | 132.8 ± 6.2 | 3.2 ± 0.2 | 6.1 ± 0.4 | 2.26 ± 0.03 | 2.32 ± 0.03 |
TiO2 (2.0%) + CuO (0.5%) | 134.5 ± 3.0 | 4.4 ± 0.4 | 7.3 ± 0.1 | 2.37 ± 0.03 | 2.29 ± 0.03 |
Sample | Microbial Purity (After 24 h) | Comments |
---|---|---|
clean cement mortar | +++ | Extensive microbial growth (>2 mm) on each side, numerous colonies visible under the sample |
ZnO (0.1%) | − | No microbial growth |
ZnO (0.3%) | −/+ | Few colonies visible under the sample |
CuO (0.5%) | − | No microbial growth |
TiO2 (1.0%) | − | No microbial growth |
TiO2 (2.0%) | −/+ | Few colonies visible under the sample |
ZnO (0.1%) + CuO (0.5%) | −/+ | Few colonies visible under the sample |
ZnO (0.3%) + CuO (0.5%) | −/+ | Few colonies visible under the sample |
TiO2 (1.0%) + CuO (0.5%) | −/+ | Few colonies visible under the sample |
TiO2 (2.0%) + CuO (0.5%) | −/+ | Few colonies visible under the sample |
Sample | Bacillus cereus | Staphylococcus aureus | Pseudomonas aeruginosa | Pseudomonas putida | Escherichia coli | Candida albicans | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC [g/L] | MBC [g/L] | MIC [g/L] | MBC [g/L] | MIC [g/L] | MBC [g/L] | MIC [g/L] | MBC [g/L] | MIC [g/L] | MBC [g/L] | MIC [g/L] | MFC [g/L] | |
clean cement mortar | above 20 | above 20 | above 20 | above 20 | above 20 | above 20 | above 20 | above 20 | above 20 | above 20 | above 20 | above 20 |
ZnO | above 20 | above 20 | 5 | 20 | above 20 | above 20 | above 20 | above 20 | 0.05 | 1.25 | 5 | 20 |
CuO | 0.05 | 1.25 | 1.25 | 5 | 0.05 | 1.25 | 0.25 | 1.25 | 0.05 | 0.25 | 0.05 | 1.25 |
TiO2 | 10 | above 20 | 20 | above 20 | 10 | above 20 | 20 | above 20 | 1.25 | 5 | 5 | above 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jędrzejczak, P.; Ławniczak, Ł.; Ślosarczyk, A.; Klapiszewski, Ł. Physicomechanical and Antimicrobial Characteristics of Cement Composites with Selected Nano-Sized Oxides and Binary Oxide Systems. Materials 2022, 15, 661. https://doi.org/10.3390/ma15020661
Jędrzejczak P, Ławniczak Ł, Ślosarczyk A, Klapiszewski Ł. Physicomechanical and Antimicrobial Characteristics of Cement Composites with Selected Nano-Sized Oxides and Binary Oxide Systems. Materials. 2022; 15(2):661. https://doi.org/10.3390/ma15020661
Chicago/Turabian StyleJędrzejczak, Patryk, Łukasz Ławniczak, Agnieszka Ślosarczyk, and Łukasz Klapiszewski. 2022. "Physicomechanical and Antimicrobial Characteristics of Cement Composites with Selected Nano-Sized Oxides and Binary Oxide Systems" Materials 15, no. 2: 661. https://doi.org/10.3390/ma15020661
APA StyleJędrzejczak, P., Ławniczak, Ł., Ślosarczyk, A., & Klapiszewski, Ł. (2022). Physicomechanical and Antimicrobial Characteristics of Cement Composites with Selected Nano-Sized Oxides and Binary Oxide Systems. Materials, 15(2), 661. https://doi.org/10.3390/ma15020661