Reveal the Viscoplastic Behaviour and Microstructure Evolution of Stainless Steel 316L
Abstract
:1. Introduction
2. Experimental Methodology
2.1. As-Received Material and the Testing Samples
2.2. EBSD Characterization
3. Results and Discussion
3.1. Stress–Strain Behaviour
3.2. Grain Evolution
3.3. GND Density Evolution
3.4. Dynamic Recrystallization and Twin Boundaries
3.5. Viscoplastic Mechanism
4. Conclusions
- (1)
- The GND density and grain size evolution during viscoplastic deformation (700–1000 °C with strain rates of 0.01 s−1 to 0.001 s−1) of 316L stainless steel (single phase FCC iron) has been revealed by the EBSD technique. In this study, the estimated GND density seems representative of total dislocation density, successfully rationalising the classic viscoplastic hardening and softening behaviour, such that EBSD-based dislocation density measurement can potentially be used for directly validating physically based viscoplastic constitutive models.
- (2)
- The strain rate sensitivity of 316L exhibits an interesting trend, in that it is generally low (0.1–0.2) at 700–900 °C but increases to 0.33, at 45% strain at 1000 °C. This high strain rate sensitivity is found due to the occurrence of DDRX. These findings suggest that the careful control of DRX could enable the materials with initially coarse grains structure to enter their superplasticity states.
- (3)
- Further investigation revealed this high strain rate sensitivity and significant DDRX are stimulated and promoted by the formation of deformation twins. Their boundaries seemed to be very effective to pin dislocations and subsequently became grain nucleation sites, when compared to other random high angle grain boundaries.
- (4)
- The EBSD-estimated GND density distribution provided evidence of the diffusion creep of large-sized grains. The vacancy-driven deformation mechanism for 900 °C and 1000 °C viscoplastic behaviour was confirmed. These again demonstrate the powerful EBSD-based dislocation density measurement approach, enabling both quantitative and detailed in-depth qualitative analyses for materials under viscoplastic deformation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhong, Y.; Rännar, L.-E.; Liu, L.; Koptyug, A.; Wikman, S.; Olsen, J.; Cui, D.; Shen, Z. Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications. J. Nucl. Mater. 2017, 486, 234–245. [Google Scholar] [CrossRef]
- Mannan, S.L.; Chetal, S.C.; Raj, B.; Bhoje, S.B. Selection of materials for prototype fast breeder reactor. Trans. Indian Inst. Met. 2003, 56, 155–178. [Google Scholar]
- Ueno, H.; Kakihata, K.; Kaneko, Y.; Hashimoto, S.; Vinogradov, A. Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel. Acta Mater. 2011, 59, 7060–7069. [Google Scholar] [CrossRef]
- Wang, W.-L.; Hsueh, K.-L.; Chang, W.-C.; Hsiao, L.-Y. SS 316L by Thermal Treatments. ECS Trans. 2011, 30, 17–23. [Google Scholar] [CrossRef]
- Kalinin, G.; Barabash, V.; Cardella, A.; Dietz, J.; Ioki, K.; Matera, R.; Santoro, R.; Tivey, R. Assessment and selection of materials for ITER in-vessel components. J. Nucl. Mater. 2000, 283–287, 10–19. [Google Scholar] [CrossRef]
- Ioki, K.; Akiba, M.; Barabaschi, P.; Barabash, V.; Chiocchio, S.; Daenner, W.; Elio, F.; Enoeda, M.; Ezato, K.; Federici, G.; et al. ITER nuclear components, preparing for the construction and R&D results. J. Nucl. Mater. 2004, 329–333, 31–38. [Google Scholar] [CrossRef]
- Giancarli, L.; Chuyanov, V.; Abdou, M.; Akiba, M.; Hong, B.; Lässer, R.; Pan, C.; Strebkov, Y. Test blanket modules in ITER: An overview on proposed designs and required DEMO-relevant materials. J. Nucl. Mater. 2007, 367–370, 1271–1280. [Google Scholar] [CrossRef]
- Heinzel, V.; Stratmanns, E.; Kleefeldt, K.; Heidinger, R. Contributions to the Design of the Electron Cyclotron Launching Upper Port Plug System (ECLUPPS); Forschungszentrum Karlsruhe GmbH: Karlsruhe, Germany, 2004. [Google Scholar]
- Yagodzinskyy, Y.; Pimenoff, J.; Tarasenko, O.; Romu, J.; Nenonen, P.; Hänninen, H. Grain refinement processes for superplastic forming of AISI 304 and 304L austenitic stainless steels. Mater. Sci. Technol. 2004, 20, 925–929. [Google Scholar] [CrossRef]
- Lin, J.; Dean, T. Modelling of microstructure evolution in hot forming using unified constitutive equations. J. Mater. Process. Technol. 2005, 167, 354–362. [Google Scholar] [CrossRef]
- Jarrar, F.; Sorgente, D.; Aksenov, S.A.; Enikeev, F. On the Challenges and Prospects of the Superplastic Forming Process. Mater. Sci. Forum 2018, 941, 2343–2348. [Google Scholar] [CrossRef]
- Romu, J.; Yagodzinskyy, Y.; Beck, W.; Hänninen, H. Manufacturing of Shaped Forms from Stainless Steels with Superplastic Forming. Mater. Sci. Forum 2004, 447–448, 159–164. [Google Scholar] [CrossRef]
- Li, D.; Ghosh, A. Tensile deformation behavior of aluminum alloys at warm forming temperatures. Mater. Sci. Eng. A 2003, 352, 279–286. [Google Scholar] [CrossRef]
- Sherby, O.D.; Wadsworth, J. Superplasticity—Recent advances and future directions. Prog. Mater. Sci. 1989, 33, 169–221. [Google Scholar] [CrossRef]
- Yasmeen, T.; Zhao, B.; Zheng, J.-H.; Tian, F.; Lin, J.; Jiang, J. The study of flow behavior and governing mechanisms of a titanium alloy during superplastic forming. Mater. Sci. Eng. A 2020, 788, 139482. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, G.; Li, M. Enhanced the superplasticity in Ti–6.5Al–2Zr–1Mo–1V alloy by a two-step deformation method. Mater. Des. 2012, 35, 80–86. [Google Scholar] [CrossRef]
- Xu, X.; Wang, G.; Xia, C. Stepped superplasticity deformation-induced plastic enhancement of Ti–6Al–1.5Cr–2.5Mo–0.5Fe–0.3Si alloy. Mater. Des. 2012, 36, 136–140. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, Q.; Song, Y.; Li, C.; Li, Z. Hot deformation and processing maps of X-750 nickel-based superalloy. Mater. Des. 2013, 51, 154–160. [Google Scholar] [CrossRef]
- Callister, W.D., Jr.; Rethwisch, D.G. Callister’s Materials Science and Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Del Valle, J.; Peñalba, F.; Ruano, O. Optimization of the microstructure for improving superplastic forming in magnesium alloys. Mater. Sci. Eng. A 2007, 467, 165–171. [Google Scholar] [CrossRef]
- Horita, Z.; Matsubara, K.; Makii, K.; Langdon, T.G. A two-step processing route for achieving a superplastic forming capability in dilute magnesium alloys. Scr. Mater. 2002, 47, 255–260. [Google Scholar] [CrossRef]
- Mirzadeh, H.; Parsa, M.H.; Ohadi, D. Hot deformation behavior of austenitic stainless steel for a wide range of initial grain size. Mater. Sci. Eng. A 2013, 569, 54–60. [Google Scholar] [CrossRef]
- Babu, K.A.; Mozumder, Y.H.; Athreya, C.; Sarma, V.; Mandal, S. Implication of initial grain size on DRX mechanism and grain refinement in super-304H SS in a wide range of strain rates during large-strain hot deformation. Mater. Sci. Eng. A 2022, 832, 142269. [Google Scholar] [CrossRef]
- Ghadar, S.; Momeni, A.; Tolaminejad, B.; Soltanalinezhad, M. A comparative study on the hot deformation behavior of 410 stainless and K100 tool steels. Mater. Sci. Eng. A 2019, 760, 394–406. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Sathiaraj, G.; Zaid, M.; Gatti, J.; Lee, C.; Tsai, C.-W.; Yeh, J.-W. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 2014, 587, 544–552. [Google Scholar] [CrossRef]
- Hertzberg, R.W.; Vinci, R.P.; Hertzberg, J.L. Deformation and Fracture Mechanics of Engineering Materials; John Wiley & Sons: Hoboken, NJ, USA, 2020; p. 80. [Google Scholar]
- Sae-Eaw, N.; Aue-U-Lan, Y. Mechanical property determination for combined sheet and bulk metal forming process by plane strain compression test. Mater. Today Proc. 2018, 5, 9376–9383. [Google Scholar] [CrossRef]
- Kumar, M.V.; Balasubramanian, V.; Rao, A.G. Hot tensile properties and strain hardening behaviour of Super 304HCu stainless steel. J. Mater. Res. Technol. 2017, 6, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Yardley, V.A.; Li, N.; Gu, B.; Li, Y.B.; Liu, Y.Q.; Shi, Z.S. Revealing the Geometrically Necessary Dislocation Density Evolution during Hot Compression of AA7050. Key Eng. Mater. 2022, 922, 109–116. [Google Scholar] [CrossRef]
- Yamashita, A.; Yamaguchi, D.; Horita, Z.; Langdon, T.G. Influence of pressing temperature on microstructural development in equal-channel angular pressing. Mater. Sci. Eng. A 2000, 287, 100–106. [Google Scholar] [CrossRef]
- Morris, D.; Muñoz-Morris, M. Microstructure of severely deformed Al–3Mg and its evolution during annealing. Acta Mater. 2002, 50, 4047–4060. [Google Scholar] [CrossRef]
- Jakobsen, B.; Poulsen, H.; Lienert, U.; Huang, X.; Pantleon, W. Investigation of the deformation structure in an aluminium magnesium alloy by high angular resolution three-dimensional X-ray diffraction. Scr. Mater. 2007, 56, 769–772. [Google Scholar] [CrossRef]
- Woo, W.; Ungár, T.; Feng, Z.; Kenik, E.; Clausen, B. X-Ray and Neutron Diffraction Measurements of Dislocation Density and Subgrain Size in a Friction-Stir-Welded Aluminum Alloy. Metall. Mater. Trans. A 2010, 41, 1210–1216. [Google Scholar] [CrossRef] [Green Version]
- Brantley, S.L.; Crane, S.R.; Crerar, D.A.; Hellmann, R.; Stallard, R. Dissolution at dislocation etch pits in quartz. Geochim. Cosmochim. Acta 1986, 50, 2349–2361. [Google Scholar] [CrossRef]
- Jiang, J.; Britton, T.; Wilkinson, A. Measurement of geometrically necessary dislocation density with high resolution electron backscatter diffraction: Effects of detector binning and step size. Ultramicroscopy 2013, 125, 1–9. [Google Scholar] [CrossRef]
- Alabort, E.; Putman, D.; Reed, R. Superplasticity in Ti–6Al–4V: Characterisation, modelling and applications. Acta Mater. 2015, 95, 428–442. [Google Scholar] [CrossRef] [Green Version]
- Manonukul, A.; Dunne, F. Dynamic recrystallisation in a copper/stainless steel pseudo-two-phase material. Mater. Sci. Eng. A 2000, 293, 173–184. [Google Scholar] [CrossRef]
- Katsas, S.; Dashwood, R.; Grimes, R.; Jackson, M.; Todd, G.; Henein, H. Dynamic recrystallisation and superplasticity in pure aluminium with zirconium addition. Mater. Sci. Eng. A 2007, 444, 291–297. [Google Scholar] [CrossRef]
- Hedworth, J.; Stowell, M.J. The measurement of strain-rate sensitivity in superplastic alloys. J. Mater. Sci. 1971, 6, 1061–1069. [Google Scholar] [CrossRef]
- Nieh, T.G.; Nieh, T.G.; Wadsworth, J.; Sherby, O.D. Superplasticity in Metals and Ceramics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Langdon, T.G. A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall. Mater. 1994, 42, 2437–2443. [Google Scholar] [CrossRef]
- Hadadzadeh, A.; Mokdad, F.; Wells, M.; Chen, D. A new grain orientation spread approach to analyze the dynamic recrystallization behavior of a cast-homogenized Mg-Zn-Zr alloy using electron backscattered diffraction. Mater. Sci. Eng. A 2018, 709, 285–289. [Google Scholar] [CrossRef]
- Zouari, M.; Bozzolo, N.; Loge, R.E. Mean field modelling of dynamic and post-dynamic recrystallization during hot deformation of Inconel 718 in the absence of δ phase particles. Mater. Sci. Eng. A 2016, 655, 408–424. [Google Scholar] [CrossRef]
- Puli, R.; Ram, G.J. Dynamic recrystallization in friction surfaced austenitic stainless steel coatings. Mater. Charact. 2012, 74, 49–54. [Google Scholar] [CrossRef]
- Chen, X.-M.; Lin, Y.; Chen, M.-S.; Li, H.-B.; Wen, D.-X.; Zhang, J.-L.; He, M. Microstructural evolution of a nickel-based superalloy during hot deformation. Mater. Des. 2015, 77, 41–49. [Google Scholar] [CrossRef]
- Huang, K.; Logé, R. A review of dynamic recrystallization phenomena in metallic materials. Mater. Des. 2016, 111, 548–574. [Google Scholar] [CrossRef]
- Pantleon, W. Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction. Scr. Mater. 2008, 58, 994–997. [Google Scholar] [CrossRef]
- Sakai, T.; Belyakov, A.; Kaibyshev, R.; Miura, H.; Jonas, J.J. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 2014, 60, 130–207. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, Y.; Xu, X.; Hopper, C.; Dong, H.; Wang, X.; Zhu, H.; Jiang, J. The study of hot deformation on laser cladding remanufactured 316L stainless steel. Mater. Des. 2021, 212, 110255. [Google Scholar] [CrossRef]
- Zheng, J.-H.; Pruncu, C.; Zhang, K.; Zheng, K.; Jiang, J. Quantifying geometrically necessary dislocation density during hot deformation in AA6082 Al alloy. Mater. Sci. Eng. A 2021, 814, 141158. [Google Scholar] [CrossRef]
- Jiang, J.; Britton, T.; Wilkinson, A. Evolution of dislocation density distributions in copper during tensile deformation. Acta Mater. 2013, 61, 7227–7239. [Google Scholar] [CrossRef]
- McNelley, T.; Swaminathan, S.; Su, J. Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scr. Mater. 2008, 58, 349–354. [Google Scholar] [CrossRef] [Green Version]
- Humphreys, J.; Rohrer, G.S.; Rollett, A. Recrystallization and Related Annealing Phenomena, 3rd ed.; Elsevier: Oxford, UK, 2017; pp. 245–304. [Google Scholar]
- Doherty, R.; Hughes, D.; Humphreys, F.; Jonas, J.; Jensen, D.J.; Kassner, M.; King, W.; McNelley, T.; McQueen, H.; Rollett, A. Current issues in recrystallization: A review. Mater. Sci. Eng. A 1997, 238, 219–274. [Google Scholar] [CrossRef] [Green Version]
- Whittenberger, J.D. Creep and tensile properties of several oxide dispersion strengthened nickel base alloys. Metall. Mater. Trans. A 1977, 8, 1155–1163. [Google Scholar] [CrossRef]
- Bai, X.-M.; Voter, A.F.; Hoagland, R.G.; Nastasi, M.; Uberuaga, B.P. Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission. Science 2010, 327, 1631–1634. [Google Scholar] [CrossRef] [PubMed]
Element | Fe | C | Mn | Si | Cr | Ni | Mo |
---|---|---|---|---|---|---|---|
Wt.% | Bal | <0.03 | 1.5 | 0.5 | 16–18 | 10–14 | 2–3 |
Twinned Grains Count | Twinned Grains Fraction (%) | Twinned Grain Area Fraction (%) |
---|---|---|
247 | 55.88 | 87.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Q.; Zhang, C.; Wang, W.; Jiang, S.; Aucott, L.; Yasmeen, T.; Jiang, J. Reveal the Viscoplastic Behaviour and Microstructure Evolution of Stainless Steel 316L. Materials 2022, 15, 7064. https://doi.org/10.3390/ma15207064
Lu Q, Zhang C, Wang W, Jiang S, Aucott L, Yasmeen T, Jiang J. Reveal the Viscoplastic Behaviour and Microstructure Evolution of Stainless Steel 316L. Materials. 2022; 15(20):7064. https://doi.org/10.3390/ma15207064
Chicago/Turabian StyleLu, Qiong, Chi Zhang, Wei Wang, Shuai Jiang, Lee Aucott, Tabassam Yasmeen, and Jun Jiang. 2022. "Reveal the Viscoplastic Behaviour and Microstructure Evolution of Stainless Steel 316L" Materials 15, no. 20: 7064. https://doi.org/10.3390/ma15207064
APA StyleLu, Q., Zhang, C., Wang, W., Jiang, S., Aucott, L., Yasmeen, T., & Jiang, J. (2022). Reveal the Viscoplastic Behaviour and Microstructure Evolution of Stainless Steel 316L. Materials, 15(20), 7064. https://doi.org/10.3390/ma15207064