Positron Annihilation Study of RPV Steels Radiation Loaded by Hydrogen Ion Implantation
Abstract
:1. Introduction
Degradation of Reactor Pressure Vessel Steels
2. Methodology
3. Investigated Specimens, Experimental Treatment, and Experimental Techniques
4. Results
4.1. PLEPS Measurement
4.2. CDB Measurement
4.3. PALS Measurement
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Enduring Value of Nuclear Energy Assets; Report No. 2020/003; World Nuclear Association Publishing: London, UK, 2020; p. 12.
- Kryukov, A.; Debarberis, L.; Ballesteros, A.; Krsjak, V.; Burcl, V.; Rogozhkin, S.V.; Nikitin, A.A.; Aleev, A.A.; Zaluzhnyi, A.G.; Grafutin, V.I.; et al. Integrated analysis of WWER-440 RPV weld re-embrittlement after annealing. J. Nucl. Mater. 2012, 429, 190–200. [Google Scholar] [CrossRef]
- Slugeň, V.; Sojak, S.; Egger, W.; Krsjak, V.; Simeg Veternikova, J.; Petriska, M. Radiation Damage of Reactor Pressure Vessel Steels Studied by Positron Annihilation Spectroscopy - A Review. Metals 2020, 10, 1378. [Google Scholar] [CrossRef]
- Krause-Rehberg, R.; Leipner, H.S. Positrons Annihilation in Semiconductors – Defect Studies; Springer: Berlin, Germany, 1997; p. 375. ISBN 3-540-64371-0. [Google Scholar]
- Hautojarvi, P.; Dupasquier, A.; Manninen, M.J.; Vehanen, A.; Mijnarends, P.E.; West, R.N.; Nieminen, R.M. Positrons in Solids; Hautojarvi, P., Ed.; Springer: Berlin/Heidelberg, Germany, 1979; p. 255. ISBN 978-3-642-81318-4. [Google Scholar]
- Hautojärvi, P.; Corbel, C. Proceedings of the International School of Physics “Enrico Fermi”, Course CXXV; Dupasquier, A., Mills, A.P., Eds.; IOS Press: Varenna, Italy, 1995; p. 491. [Google Scholar]
- Seeger, A.; Major, J.; Jaggy, F. Positron Annihilation; Jain, P.C., Singru, R.M., Gopinathan, K.P., Eds.; World Scientific Publishing: Singapore, 1985; p. 137. [Google Scholar]
- The Database on Nuclear Power Reactors. PRIS–Power Reactor Information System, IAEA Website. Available online: https://pris.iaea.org/pris/home.aspx (accessed on 20 January 2022).
- Nick, K.S.; Bourdon, P. Legal Frameworks for Long-Term Operation of Nuclear Power Reactors; Legal Adviser, OLC; OECD Publishing: Berlin, Germany, 2019; ISBN 978-92-64-63128-1. [Google Scholar]
- Lokhov, A.; Huerta, A.; Dufresne, L.; Giraud, A.; Osouf, N. (Eds.) The Economics of Long-Term Operation of Nuclear Power Plants; OECD/NEA Publishing: Berlin, Germany, 2012; p. 116. ISBN 978-92-64-99205-4. [Google Scholar]
- Altstadt, E.; Ballesteros, A.; Bergner, F.; O’Donnell, I.; Efsing, P.; Hein, H.; Malerba, L.; Ortner, S.; Planman, T. (Eds.) RPV Irradiation Embrittlement: NUGENIA Position on RPV Irradiation Embrittlement Issues Based on the Outcome of the EURATOM FP7 Project LONGLIFE; NUGENIA, VTT Technical Research Center of Finland: Helsinki, Finland, 2015; p. 27. [Google Scholar]
- Odette, G.; Lucas, G. Embrittlement of Nuclear Reactor Pressure Vessels. JOM 2001, 53, 18–22. [Google Scholar] [CrossRef]
- Debarberis, L.; Kryukov, A.; Gillemont, F.; Acosta, B.; Sevini, F. Semi-mechanistic analytical model for radiation embrittlement and re-embrittlement data analysis. Int. J. Press. Vessel. Pip. 2005, 82, 195–200. [Google Scholar] [CrossRef]
- Xiu, P.; Massey, C.P.; Kelsy Green, T.M.; Taller, S.; Isheim, D.; Sridharan, N.; Field, K.G. Microchemical evolution of irradiated additive-manufactured HT9. J. Nucl. Mater 2022, 559, 153410. [Google Scholar] [CrossRef]
- Mamivand, M.; Wells, P.; Ke, H.; Shu, S.; Odette, G.R.; Morgan, D. CuMnNiSi precipitate evolution in irradiated reactor pressure vessel steels: Integrated Cluster Dynamics and experiments. Acta Mater. 2019, 180, 199–217. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Integrity of Reactor Pressure Vessels in Nuclear Power Plants: Assessment of Irradiation Embrittlement Effects in Reactor Pressure Vessel Steels; International Atomic Energy Agency: Vienna, Austria, 2009; p. 144. ISBN 978-92-0-101709-3. [Google Scholar]
- Nanstad, R.K.; Server, W.L. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2011. [Google Scholar]
- Brumovsky, M.; Ahlstrand, R.; Brynda, J.; Debarberis, L.; Kohopaa, J.; Kryukov, A.; Server, W. Annealing and Re-Embrittlement of Reactor Pressure Vessel Materials. AMES Report N.19, JRC: Petten, Netherland. 2008. Available online: https://core.ac.uk/download/pdf/38614107.pdf (accessed on 20 January 2022).
- Server, W.; Sokolov, M. Thermal Annealing of Reactor Pressure Vessels Is a Needed Mitigation Option. IAEA: Vienna, Austria. 2013. Available online: http://www.iaea.org/NuclearPower/Downloadable/Meetings/2013/2013-11-05-11-08-TM-NPE/38.Server_USA.pdf (accessed on 20 January 2022).
- Brumovsky, M. Embrittlement of Reactor Pressure Vessels (RPVs) in WWER-Type Reactors. Irradiation Embrittlement of Reactor Pressure Vessels (RPVs) in Nuclear Power Plants; Woodhead Publishing: Sawston, UK, 2014; ISBN 9780857096470. [Google Scholar]
- Slugen, V. Safety of VVER-440 Reactors – Barriers Against Fission Products Release; Springer: London, UK, 2011; ISBN 978-1-4471-6114-1. [Google Scholar]
- Motter, F. Low-Temperature Annealing of the BR-3 Reactor Vessel, NUREG/CP-0058-Vol.4; U.S. Nuclear Regulatory Commission: Rockville, MD, USA, 1985; pp. 144–175. [Google Scholar]
- Fabry, A. The BR3 Pressure Vessel Anneal: Lessons and Perspective. In Proceedings of the DOE/SNL/EPRI Workshop on Reactor Pressure Vessel Thermal Annealing, Albuquerque, NM, USA, 17–18 February 1994; pp. 5.1–5.33. [Google Scholar]
- Mager, T. Thermal Annealing of an Embrittled Reactor Pressure Vessel: Feasibility and Methodology; EPRI NP-6113; Electric Power Research Institute: Washington, DC, USA, 1989. [Google Scholar]
- Nanstad, R.K.; Tipping, P.; Kalkhof, R.D.; Sokolov, M.A. Effects of Irradiation and Post-Annealing Reirradiation on Reactor Pressure Vessel Steel Heat JRQ. In The Effects of Radiation on Materials: 21st International Symposium, ASTM STP 1447; Grossbeck, M.L., Allen, T.R., Lott, R.G., Kumar, A.S., Eds.; ASTM International: West Conshohocken, PA, USA, 2004; pp. 149–163. [Google Scholar]
- Bergner, F.; Hernandez-Mayoral, M.; Heintze, C.; Konstantinovic, M.J.; Malerba, L.; Pareige, C. TEM Observation of Loops Decorating Dislocations and Resulting Source Hardening of Neutron-Irradiated Fe-Cr Alloys. Metals 2020, 10, 147. [Google Scholar] [CrossRef] [Green Version]
- Konstantinovic, M.J.; Van Renterghem, W.; Matijasevic, M.; Minov, B.; Lambrecht, M.; Toyama, T.; Chiapetto, M.; Malerba, L. Mechanical and microstructural properties of neutron irradiated Fe–Cr–C alloys. Phys. Status Solidi 2016, 213, 2988–2994. [Google Scholar] [CrossRef]
- Shimodaira, M.; Toyama, T.; Yoshida, K.; Inoue, K.; Ebisawa, N.; Tomura, K.; Yoshiie, T.; Konstantinovi, M.J.; Gérard, R.; Nagai, Y. Contribution of irradiation-induced defects to hardening of a low-copper reactor pressure vessel steel. Acta Mater. 2018, 155, 402–409. [Google Scholar] [CrossRef]
- Amayev, A.D.; Kryukov, A.M.; Sokov, M.A. Recovery of the Transition Temperature of Irradiated WWER-440 Vessel Metal by Annealing. In Radiation Embrittlement of Nuclear Pressure Vessel Steels: An International Review; Steele, L.E., Ed.; ASTM International: West Conshohocken, PA, USA, 1993; Volume 4, pp. 369–379. [Google Scholar]
- Alekseenko, N.N.; Amaev, A.; Gorynin, I.; Nikolaev, V.A. Radiation Damage of Nuclear Power Plant Pressure Vessel Steels; American Nuclear Society: La Grange Park, IL, USA, 1997; p. 282. ISBN 978-0-89448-564-0. [Google Scholar]
- Was, G.S.; Jiao, Z.; Getto, E.; Sun, K.; Monterrosa, A.M.; Maloy, S.A.; Anderoglue, O.; Sencer, B.H.; Hackett, M. Emulation of reactor irradiation damage using ion beams. Scr. Mater. 2014, 88, 33–36. [Google Scholar] [CrossRef]
- Was, G.S. Challenges to the use of ion irradiation for emulating reactor irradiation. J. Mater. Res. 2015, 30, 1–25. [Google Scholar] [CrossRef]
- Was, G.S.; Allen, T.R. Radiation damage from different particle types. In Radiation Effects in Solid; NATO Science Series II: Mathematics, Physics and Chemistry; Sickafus, K.E., Kotomin, E.A., Uberuaga, B.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; p. 235. ISSN 1568-2609. [Google Scholar]
- Ghoneim, M.M.; Hammad, F.H. Pressure vessel steels: Influence of chemical composition on irradiation sensitivity. Int. J. Press. Vess. Pip. 1997, 74, 189–198. [Google Scholar] [CrossRef]
- Kohopaa, J.; Ahlstrand, R. Re-embrittlement behaviour of VVER-440 reactor pressure vessel weld material after annealing. Int. J. Press. Vess. Pip. 2000, 76, 575–584. [Google Scholar] [CrossRef]
- Debarberis, L.; von Estorff, U.; Crutzen, S.; Beers, M.; Stamm, H.; de Vries, M.I.; Tjoa, G.L. LYRA and other projects on RPV steel embrittlement: Study and mitigation of the AMES Network. Nucl. Eng. Des. 2000, 195, 217–226. [Google Scholar] [CrossRef]
- Uniter States Nuclear Regulatory Commission. Effects of Residual Elements on Predicted Radiation Damage to Reactor Vessel Materials; U.S. NRC Regulatory Guide 1.99, Rev.1; Uniter States Nuclear Regulatory Commission: Washinghton, DC, USA, 1977; p. 7. [Google Scholar]
- Suzuki, K. Reactor pressure vessel materials. In Neutron Irradiation Effects in Reactor Pressure Vessel Steels and Weldments; International Atomic Energy Agency: Vienna, Austria, 1998; pp. 70–164. [Google Scholar]
- Grosse, M.; Denner, V.; Böhmert, J.; Mathon, M.H. Irradiation-induced structural changes in surveillance material of VVER 440-type weld metal. J. Nucl. Mater. 2000, 277, 280–287. [Google Scholar] [CrossRef]
- Koutsky, J.; Kocik, J. Radiaton Damage of Structural Materials; Academy of Sciences of the Czech Republic: Prague, Czech Republic, 1994; p. 361. [Google Scholar]
- Puska, M.J.; Nieminen, R.M. Theory of positrons in solids and on solid surfaces. Rev. Mod. Phys. 1994, 66, 841–897. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.W.; Paetsch, R. Interaction of positrons and dislocations. J. Phys. F Met. Phys. 1972, 2, 997–1008. [Google Scholar] [CrossRef]
- Häkkinen, H.; Mäakinen, S.; Manninen, M. Edge dislocations in fcc metals: Microscopic calculations of core structure and positron states in Al and Cu. Phys. Rev. B 1990, 41, 12441–12453. [Google Scholar] [CrossRef]
- Petersen, K.; Repin, I.A.; Trumpy, G. Positron lifetime analysis of dislocations arising from tensile strain. J. Phys. Condens. Matter. 1996, 8, 2815–2822. [Google Scholar] [CrossRef]
- Smedskjaer, L.C.; Manninen, M.; Fluss, M.J. An alternative interpretation of positron annihilation in dislocations. J. Phys. F Met. Phys. 1980, 10, 2237–2249. [Google Scholar] [CrossRef]
- Kamimura, Y.; Tsutsumi, T.; Kuramoto, E. Calculations of Positron Lifetimes in a Jog and Vacancies on an Edge-Dislocation Line in Fe. Phys. Rev. B 1995, 52, 879–885. [Google Scholar] [CrossRef]
- Petrov, L.; Nankov, N.; Popov, E.; Troev, T. Positron Life Time Calculations of Defect in α-Iron Containing Hydrogen. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2008; Volume 996, pp. 177–182. [Google Scholar]
- Kamimura, Y.; Tsutsumi, T.; Kuramoto, E. Influence of Dislocations on Positron Lifetime in Iron. J. Phys. Soc. Jpn. 1997, 66, 3090–3096. [Google Scholar] [CrossRef]
- Park, Y.K.; Waber, J.T.; Meshii, M.; Snead, C.L.; Park, C.G. Dislocation studies on deformed single crystals of high-purity iron using positron annihilation: Determination of dislocation densities. Phys. Rev. B 1986, 34, 823. [Google Scholar] [CrossRef]
- Hodges, C.H. Positron diffusion and trapping at vacancies. J. Phys. F Met. Phys. 1974, 4, L230. [Google Scholar] [CrossRef]
- Dupasquier, A.; Romero, R.; Somoza, A. Positron trapping at grain boundaries. Phys. Rev. B 1993, 48, 9235. [Google Scholar] [CrossRef]
- Selim, F.A. Positron annihilation spectroscopy of defects in nuclear and irradiated materials–A review. Mater. Charact. 2021, 174, 110952. [Google Scholar] [CrossRef]
- Phythian, W.J.; English, C.A. Microstructural evolution in reactor pressure vessel steels. J. Nucl. Mater. 1993, 205, 162–177. [Google Scholar] [CrossRef]
- Slugen, V. Microstructural Analysis of Nuclear Reactor Pressure Vessel Steels. In Mössbauer Spectroscopy in Material Science; Miglierini, M., Petridis, D., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 119–130. [Google Scholar]
- De Bakker, P.; Slugen, V.; De Grave, E.; Van Walle, E.; Fabry, A. Differences between eastern and western-type nuclear reactor pressure vessel steels as probed by Mössbauer spectroscopy. Hyperfine Interact. 1997, 110, 11–16. [Google Scholar] [CrossRef]
- Brauer, G.; Liszkay, L.; Molnar, B.; Krause, R. Microstructural aspects of neutron embrittlement of reactor pressure vessel steels - A view from positron annihilation spectroscopy. Nucl. Eng. Desg. 1991, 127, 47–68. [Google Scholar] [CrossRef]
- Pareja, R.; De Diego, N.; De La Cruz, R.M.; Rio, J.D. Postirradiation recovery of a reactor pressure vessel steel investigated by positron annihilation and microhardness measurements. Nucl. Technol. 1993, 104, 52–63. [Google Scholar] [CrossRef]
- Slugen, V.; Zeman, A.; Petriska, M.; Krsjak, V. Positron study of radiation embrittlement of steels used in water cooled, water moderated energy reactors. Appl. Surf. Sci. 2006, 252, 3309–3315. [Google Scholar] [CrossRef]
- Valo, M.; Krause, R.; Saarinen, K.; Hautojärvi, P.; Hawthorne, R. Irradiation Response and Annealing Behaviour of Pressure Vessel Model Steels and Iron Ternary Alloys Measured with Positron Techniques. In Effects of Radiation on Materials: 15th International Symposium; ASTM STP, 1125; Stoller, R.E., Kumar, A.S., Gelles, D.S., Eds.; American Society for Testing and Materials: West Conshohocken, PA, USA, 1992; pp. 172–185. [Google Scholar]
- Hartley, J.H.; Howell, R.H.; Asoka-Kumar, P.; Sterne, P.A.; Akers, D.; Denison, A. Positron annihilation studies of fatigue in 304 stainless steel. Appl. Surf. Sci. 1999, 149, 204–206. [Google Scholar] [CrossRef]
- Becvar, F.; Cizek, J.; Lestak, L.; Novotny, I.; Prochazka, I.; Sebesta, F. A high-resolution BaF2 positron-lifetime spectrometer and experience with its long-term exploitation. Nucl. Instr. Meth. A 2000, 443, 557–577. [Google Scholar] [CrossRef]
- Miller, M.K.; Russel, K.F.; Kocik, J.; Keilova, E. Embrittlement of low copper VVER 440 surveillance samples neutron-irradiated to high fluences. J. Nucl. Mater. 2000, 282, 83–88. [Google Scholar] [CrossRef]
- Cizek, J.; Becvar, F.; Prochazka, I. Three-detector setup for positron-lifetime spectroscopy of solids containing 60Co radionuclide. Nucl. Instr. Meth. A 2000, 450, 325–337. [Google Scholar] [CrossRef]
- Cizek, J.; Prochazka, I.; Kocik, J.; Keilova, E. Positron Lifetime Study of Reactor Pressure Vessel Steels. Phys. Stat. Sol. (A) 2000, 178, 651–662. [Google Scholar] [CrossRef]
- Van Hoorebeke, L.; Fabry, A.; van Walle, E.; Van de Velde, J.; Segers, D.; Dorikens-Vanpraet, L. A three-detector positron lifetime setup suited for measurements on irradiated steels. Nucl. Instr. Meth. A 1996, 371, 566–571. [Google Scholar] [CrossRef]
- Ghazi-Wakili, K.; Zimmermann, U.; Brunner, J.; Tipping, P.; Waeber, W.B.; Heinrich, F. Positron Annihilation Studies on Neutron Irradiated Pressure Vessel Steels. Phys. Stat. Sol. (A) 1987, 102, 153–163. [Google Scholar] [CrossRef]
- Slugen, V.; Segers, D.; De Bakker, P.M.A.; DeGrave, E.; Magula, V.; Van Hoecke, T.; Van Waeyenberge, B. Annealing behaviour of reactor pressure-vessel steels studied by positron-annihilation spectroscopy, Mössbauer spectroscopy and transmission electron microscopy. J. Nucl. Mater. 1999, 274, 273–286. [Google Scholar] [CrossRef]
- Slugen, V.; Magula, V. The micro structural study of 15Kh2MFA and 15Kh2NMFA reactor pressure vessel steels using positron-annihilation spectroscopy, mössbauer spectroscopy and transmission electron microscopy. Nucl. Eng. Desg. 1998, 186, 323–342. [Google Scholar] [CrossRef]
- Slugen, V.; De Grave, E.; Segers, D. Microstructural study of thermally treated reactor pressure vessel steels using spectroscopic methods. Int. J. Nucl. Energy Sci. Technol. 2004, 1, 20–32. [Google Scholar] [CrossRef]
- Slugen, V.; Hascik, J.; Gröne, R.; Bartik, P.; Zeman, A.; Kögel, G.; Sperr, P.; Triftshäuser, W. Investigation of Reactor Steels. Mater. Sci. Forum 2001, 363–365, 47–51. [Google Scholar] [CrossRef]
- Lambrecht, M.; Almazouzi, A. Positron annihilation study of neutron irradiated model alloys and of a reactor pressure vessel steel. J. Nucl. Mater. 2009, 385, 334–338. [Google Scholar] [CrossRef]
- Puska, M.J.; Sob, M.; Brauer, G.; Korhonen, T. First-principles calculation of positron lifetimes and affinities in perfect and imperfect transition-metal carbides and nitrides. Phys. Rev. B 1994, 49, 10947. [Google Scholar] [CrossRef] [Green Version]
- Slugen, V.; Hein, H.; Sojak, S.; Veternikova, J.; Petriska, M.; Sabelova, V.; Pavuk, M.; Hinca, R.; Stacho, M. Evaluation of the Reactor Pressure Vessel Steels by Positron Annihilation. J. Nucl. Mater. 2013, 442, 499–506. [Google Scholar] [CrossRef]
- Pecko, S.; Sojak, S.; Slugen, V. Comparative study of irradiated and hydrogen implantation damaged German RPV steels from PAS point of view. Appl. Surf. Sci. 2014, 312, 172–175. [Google Scholar] [CrossRef]
- Nagai, Y.; Tang, Z.; Hasegawa, M.; Kanai, T.; Saneyasu, M. Irradiation-induced Cu aggregations in Fe: An origin of embrittlement of reactor pressure vessel steels. Phys. Rev. B 2001, 63, 131110. [Google Scholar] [CrossRef]
- Magula, V.; Janovec, J. Effect of short time high temperature annealing on kinetics of carbidic reactions in 2.7 Cr-O. 6Mo-0.3 V steel. Ironmak. Steelmak. 1994, 21, 64. [Google Scholar]
- Kocik, J.; Keilova, E.; Cizek, J.; Prochazka, I. In Proceedings of the 9th International Conference on Metallurgy METAL 2000; Tanger Ltd.: Ostrava, Czech Republic, 2000. Paper No. 719.
- Brandt, W. Positron Annihilation; Stewart, A.T., Roelling, L.O., Eds.; Academic Press: New York, NY, USA, 1967; p. 155. [Google Scholar]
- Frank, W.; Seeger, A. Theoretical foundation and extension of the trapping model. Appl. Phys. 1974, 3, 61–66. [Google Scholar] [CrossRef]
- Seeger, A. The study of defects in crystals by positron annihilation. Appl. Phys. 1974, 4, 183. [Google Scholar] [CrossRef]
- Nieminen, R.N.; Laakkonen, J.; Hautojärvi, P.; Vehanen, A. Temperature dependence of positron trapping at voids in metals. Phys. Rev. B 1979, 19, 1397–1402. [Google Scholar] [CrossRef]
- Frieze, W.E.; Lynn, K.G.; Welch, D.O. Positron trapping model including spatial diffusion of the positron. Phys. Rev. B 1985, 31, 15. [Google Scholar] [CrossRef]
- Britton, D.T. Time-dependent diffusion and annihilation of positrons implanted in a semi-infinite medium. J. Phys. Condens. Matte 1991, 3, 681. [Google Scholar] [CrossRef]
- Kögel, G. Positron diffusion in solids and the reconstruction of inhomogeneous defect distributions from lifetime measurements. Appl. Phys. A 1996, 63, 227. [Google Scholar] [CrossRef]
- Sperr, P.; Egger, W.; Kögel, G.; Dollinger, G.; Hugenschmedt, C.; Repper, R.; Piochacz, C. Status of the pulsed low energy positron beam system (PLEPS) at the Munich Research Reactor FRM-II. Appl. Surf. Sci. 2008, 255, 35–38. [Google Scholar] [CrossRef]
- Hugenschmidt, C. Positron in surface physics. Surf. Sci. Rep. 2016, 71, 547–594. [Google Scholar] [CrossRef] [Green Version]
- Hugenschmidt, C.; Löwe, B.; Mayer, J.; Piochacz, C.; Pikart, P.; Repper, R.; Stadlbauer, M.; Scheckenbach, K. Unprecedented intensity of a low-energy positron beam. Nucl. Instrum. Meth. A 2008, 593, 616–618. [Google Scholar] [CrossRef]
- Steele, L.E. Radiation Embrittlement of Nuclear Reactor Pressure Vessel Steels: An International Review (Fourth Volume); ASTM International: West Conshohocken, PA, USA, 1993; ISBN 0-8031-1478-8. [Google Scholar]
- Noga, P.; Dobrovodsky, J.; Vana, D.; Beno, M.; Zavacka, A.; Muska, M.; Halgas, R.; Minarik, S.; Riedlmajer, R. A new ion-beam laboratory for materials research at the Slovak University of Technology. Nucl. Instr. Meth. B 2017, 409, 264–267. [Google Scholar] [CrossRef]
- Edwardson, C. Positron Studies of Defects in Thin Films and Semiconductors. Ph.D. Thesis, University of Bath, Bath, UK, 2013. [Google Scholar]
- Krause-Rehberge, R.; Leipner, S.H. Positron Annihilation in Semiconductors; Springer: Berlin, Germany, 1998; ISBN 3-540-64371-0. [Google Scholar]
- Eldrup, M. Positron Methods for the Study of Defects in Bulk Materials. J. Phys. IV 1995, 5, C1-93–C1-109. [Google Scholar] [CrossRef] [Green Version]
- Saro, M.; Kršjak, V.; Lauko, R.; Slugeň, V. Application of Na-22 positron source to the investigation of ion-implanted iron samples. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 2182. [Google Scholar]
- Petriska, M.; Sabelova, V.; Slugeň, V.; Sojak, S.; Stacho, M.; Veterníková, J. Digital Coincidence Doppler Broadening setup at FEI STU. Phys. Procedia 2012, 35, 117–121. [Google Scholar] [CrossRef] [Green Version]
- Kuriplach, J.; Melikhova, O.; Domain, C.; Becquart, C.S.; Kulikov, D.; Malerba, L.; Hou, M.; Almazouzi, A.; Duque, C.A.; Morales, A.L. Vacancy-solute complexes and their clusters in iron. Appl. Surf. Sci. 2006, 252, 3303–3308. [Google Scholar] [CrossRef]
- Dryzek, J.; Horodek, P. Positron Annihilation Studies of the Near-Surface Regions of Niobium before and after Wear Treatment. Tribol. Lett. 2017, 65, 117. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.C.; Chen, Y.Q.; Wang, B.; Wang, S.J.; Jean, Y.C.; Suzuki, R.; Ohdaira, T. Slow positron beam study of corrosion-related defects in pure iron. Appl. Surf. Sci. 2006, 252, 3274–3277. [Google Scholar] [CrossRef]
- Sato, K.; Kinomura, A.; Omura, T.; Xu, Q.; Yoshiie, T.; Kasada, R.; Kimura, A.; Morishita, K. Positron annihilation lifetime measurements of He-ion-irradiated Fe using pulsed positron beam. In Journal of Physics: Conference Series, Volume 262, 12th International Workshop on Slow Positron Beam Techniques (SLOPOS12) 1–6 August 2010, Magnetic Island, North Queensland, Australia; IOP Publishing: Bristol, UK, 2011; p. 012053. [Google Scholar]
- Troev, T.; Popov, E.; Staikov, P.; Nankov, N. Positron lifetime studies of defects in α-Fe containing helium. Phys. Status Solidi C 2009, 6, 2373–2375. [Google Scholar] [CrossRef]
- Horodek, P.; Skuratov, V.A. Variable energy positron beam studies of defects in heavy ion implanted palladium. Surf. Coat. Technol. 2016, 296. [Google Scholar] [CrossRef]
- Kansy, J. Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instr. Meth. Phys. Res. A 1996, 374, 235–244. [Google Scholar] [CrossRef]
- Petersen, K. Crystal Defects Studied by Positrons; Politeknik Forlag: Lyngby, Denmark, 1978; ISBN 8750204882. [Google Scholar]
- Zhang, J.; Liu, F.; Cheng, G.; Shang, J.; Liu, J.; Cao, S.; Liu, Z. Electron structure and vacancy properties and Al-substitution dependence of the positron lifetime in Y1:2:3 superconducting ceramics. Phys. Lett. A 1995, 201, 70–76. [Google Scholar] [CrossRef]
- Jansson, V.; Malerba, L. Simulation of the nanostructure evolution under irradiation in Fe–C alloys. J. Nucl. Mater. 2013, 443, 274–285. [Google Scholar] [CrossRef] [Green Version]
- Jansson, V.; Chiapetto, M.; Malerba, L. The nanostructure evolution in Fe–C systems under irradiation at 560 K. J. Nucl. Mater. 2013, 442, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Anento, N.; Serra, A. Carbon–vacancy complexes as traps for self-interstitial clusters in Fe–C alloys. J. Nucl. Mater. 2013, 44, 236–242. [Google Scholar] [CrossRef]
- Terentyev, D.; Anento, N.; Serra, A.; Jansson, V.; Khater, H.; Bonny, G. Interaction of carbon with vacancy and self-interstitial atom clusters in a-iron studied using metallic–covalent interatomic potential. J. Nucl. Mater. 2011, 408, 272–284. [Google Scholar] [CrossRef]
- Shibamoto, H.; Kimura, A.; Hasegawa, M.; Matsui, H.; Yamaguchi, S. Effects of Proton Irradiation on Reactor Pressure Vessel Steel and Its Model Alloys. J. ASTM Int. 2005, 2, 9. [Google Scholar] [CrossRef]
- Dai, G.H.; Li, X.H.; Moser, P.; Moya, G.; Van Duysen, J.C. Defect Recovery in α -Fe e−-Irradiated at 300 K. Acta Phys. Pol. A 1993, 3, 277–286. [Google Scholar] [CrossRef]
- Iwai, T. A positron beam Doppler broadening analysis of formation and recovery of defects produced by ion irradiation in Fe−C−Cu alloys. Radiat. Eff. Defects Solids 2013, 168, 308–315. [Google Scholar] [CrossRef]
- Takaki, S.; Fuss, J.; Kuglers, H.; Dedek, U.; Schultz, H. The resistivity recovery of high purity and carbon doped iron following low temperature electron irradiation. Radiat. Eff. Defects Solids 1983, 79, 87–122. [Google Scholar] [CrossRef]
- Hari Babu, S.; Amarendra, G.; Rajaraman, R.; Sundar, C.S. Microstructural Characterization of Ferritic/Martensitic Steels by Positron Annihilation Spectroscopy. J. Nucl. Mater. 2013, 432, 012010. [Google Scholar] [CrossRef]
- Ilola, R.; Nadutov, V.; Valo, M.; Hanninen, H. On irradiation embrittlement and recovery annealing mechanisms of Cr–Mo–V type pressure vessel steels. J. Nucl. Mater. 2002, 302, 185–192. [Google Scholar] [CrossRef]
- Jones, W.B.; Hills, C.R.; Polonis, D.H. Microstructural evolution of modified 9Cr-1Mo steel. Metall. Trans. A 1991, 22, 1049–1058. [Google Scholar] [CrossRef]
- Slugen, V.; Kogel, G.; Sperr, P.; Triftshauser, W. Positron annihilation studies of neutron irradiated and thermally treated reactor pressure vessel steels. J. Nucl. Mater. 2002, 302, 89–95. [Google Scholar] [CrossRef]
- Slugen, V.; Zeman, A.; Lipka, J.; Debarberis, L. Positron annihilation and Mossbauer spectroscopy applied to WWER-1000 RPV steels in the frame of IAEA High Ni Co-ordinated Research Programme. NDTE Int. 2004, 37, 651–661. [Google Scholar] [CrossRef]
- Abe, F. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants. Sci. Technol. Adv. Mater. 2008, 9, 013002. [Google Scholar] [CrossRef]
- Zeman, A.; Debarberis, L.; Kocik, J.; Slugen, V.; Keilova, E. Microstructural analysis of candidate steels pre-selected for new advanced reactor systems. J. Nucl. Mater. 2007, 362, 259. [Google Scholar] [CrossRef]
- Zeman, A.; Debarberis, L.; Slugen, V.; Acosta, B. Assessment of the correlation between mechanical testing and positron annihilation outcomes for RPV model alloys. Appl. Surf. Sci. 2005, 252, 3290. [Google Scholar] [CrossRef]
- Dai, Y.; Krsjak, V.; Kuksenko, V.; Schaeublin, R. Microstructural changes of ferritic/martensitic steels after irradiation in spallation target environments. J. Nucl. Mater. 2018, 511, 508–522. [Google Scholar] [CrossRef]
- David, A.; Kögel, G.; Sperr, P.; Triftshäuser, W. Lifetime Measurements with a Scanning Positron Microscope. Phys. Rev. Lett. 2001, 87, 067402. [Google Scholar] [CrossRef]
Steel | C | Mn | Si | P | S | Cr | Ni | Mo | V | Cu |
---|---|---|---|---|---|---|---|---|---|---|
15Kh2MFA | 0.13 | 0.30 | - | max | max | 2.50 | max | 0.60 | 0.25 | max |
0.18 | 0.60 | - | 0.020 | 0.025 | 3.00 | 0.40 | 0.80 | 0.35 | 0.30 | |
15Kh2MFAA | 0.11 | 0.30 | 0.17 | max | max | 2.00 | max | 0.60 | 0.25 | max |
Investigated steel | 0.16 | 0.60 | 0.37 | 0.012 | 0.015 | 2.50 | 0.40 | 0.80 | 0.35 | 0.10 |
Additions: | As | Sb | Sn | P+Sb+Sn | Co | P | S | Cu | ||
0.10 | 0.005 | 0.005 | 0.015 | 0.02 | 0.012 | 0.15 | 0.08 |
Annihilation Site | EB | |
---|---|---|
(ps) | (eV) | |
Fe: defect-free structure | 97–110 | |
mono-vacancy | 179 | −2.39 |
di-vacancy | 195 | |
vacancy with hydrogen | 146 | |
Fe: edge dislocation line | 117 | −0.28 |
jog on the edge dislocation line | 117 | −0.11 |
vacancy on the edge dislocation line | 140 | −0.92 |
di-vacancy on the edge dislocation line | 117 | −0.07 |
Fe: screw dislocation | 114 | −0.22 |
vacancy in screw dislocation | 174 | −2.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slugen, V.; Brodziansky, T.; Simeg Veternikova, J.; Sojak, S.; Petriska, M.; Hinca, R.; Farkas, G. Positron Annihilation Study of RPV Steels Radiation Loaded by Hydrogen Ion Implantation. Materials 2022, 15, 7091. https://doi.org/10.3390/ma15207091
Slugen V, Brodziansky T, Simeg Veternikova J, Sojak S, Petriska M, Hinca R, Farkas G. Positron Annihilation Study of RPV Steels Radiation Loaded by Hydrogen Ion Implantation. Materials. 2022; 15(20):7091. https://doi.org/10.3390/ma15207091
Chicago/Turabian StyleSlugen, Vladimir, Tomas Brodziansky, Jana Simeg Veternikova, Stanislav Sojak, Martin Petriska, Robert Hinca, and Gabriel Farkas. 2022. "Positron Annihilation Study of RPV Steels Radiation Loaded by Hydrogen Ion Implantation" Materials 15, no. 20: 7091. https://doi.org/10.3390/ma15207091