‘Molecular Beam Epitaxy’ on Organic Semiconductor Single Crystals: Characterization of Well-Defined Molecular Interfaces by Synchrotron Radiation X-ray Diffraction Techniques
Abstract
:1. Introduction
2. Experimental Methods
2.1. Physical Vapor Transport
2.2. Grazing Incidence X-ray Diffraction
3. Heteroepitaxy on Pentacene Single Crystals
3.1. C60 Fullerene/Pentacene Single Crystal
3.2. Perfluoropentacene (PFP)/Pentacene Single Crystal
3.3. Tertaazanaphthacene (TANC)/Pentacene Single Crystal
4. Epitaxy in Various Types onto Rubrene Single Crystals
4.1. Heteroepitaxy of C60 Fullerene on Rubrene Single Crystal
4.2. Homoepitaxy of Rubrene on Rubrene Single Crystal
4.3. “Quasi-Homoepitaxy” of Di(Trifluoromethyl)Dimethylrubrene on Rubrene Single Crystal
5. Summary and Perspective
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pohl, U.W. Epitaxy of Semiconductors; Graduate Texts in Physics; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-32969-2. [Google Scholar]
- Hasegawa, T.; Takeya, J. Organic field-effect transistors using single crystals. Sci. Technol. Adv. Mater. 2009, 10, 024314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.W.; VanSlyke, S.A. Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 913–915. [Google Scholar] [CrossRef]
- Tang, C.W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 1986, 48, 183–185. [Google Scholar] [CrossRef]
- Hiramoto, M.; Fujiwara, H.; Yokoyama, M. Three-layered organic solar cell with a photoactive interlayer of codeposited pigments. Appl. Phys. Lett. 1991, 58, 1062–1064. [Google Scholar] [CrossRef]
- Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270, 1789–1791. [Google Scholar] [CrossRef] [Green Version]
- Ishii, H.; Sugiyama, K.; Ito, E.; Seki, K. Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces. Adv. Mater. 1999, 11, 605–625. [Google Scholar] [CrossRef]
- Peumans, P.; Uchida, S.; Forrest, S.R. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 2003, 425, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, N.R.; Wang, W.; Alloway, D.M.; Placencia, D.; Ratcliff, E.; Brumbach, M. Organic/Organic’ Heterojunctions: Organic Light Emitting Diodes and Organic Photovoltaic Devices. Macromol. Rapid Commun. 2009, 30, 717–731. [Google Scholar] [CrossRef] [PubMed]
- Campione, M.; Sassella, A.; Moret, M.; Papagni, A.; Trabattoni, S.; Resel, R.; Lengyel, O.; Marcon, V.; Raos, G. Organic−Organic Epitaxy of Incommensurate Systems: Quaterthiophene on Potassium Hydrogen Phthalate Single Crystals. J. Am. Chem. Soc. 2006, 128, 13378–13387. [Google Scholar] [CrossRef] [PubMed]
- Sassella, A.; Campione, M.; Raimondo, L.; Tavazzi, S.; Borghesi, A.; Goletti, C.; Bussetti, G.; Chiaradia, P. Epitaxial growth of organic heterostructures: Morphology, structure, and growth mode. Surf. Sci. 2007, 601, 2571–2575. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, F.; Yang, J.; Geng, Y.; Yan, D. Weak Epitaxy Growth Affording High-Mobility Thin Films of Disk-Like Organic Semiconductors. Adv. Mater. 2007, 19, 2168–2171. [Google Scholar] [CrossRef]
- Wang, H.; Song, D.; Yang, J.; Yu, B.; Geng, Y.; Yan, D. High mobility vanadyl-phthalocyanine polycrystalline films for organic field-effect transistors. Appl. Phys. Lett. 2007, 90, 253510. [Google Scholar] [CrossRef]
- Machida, S.; Nakayama, Y.; Duhm, S.; Xin, Q.; Funakoshi, A.; Ogawa, N.; Kera, S.; Ueno, N.; Ishii, H. Highest-Occupied-Molecular-Orbital Band Dispersion of Rubrene Single Crystals as Observed by Angle-Resolved Ultraviolet Photoelectron Spectroscopy. Phys. Rev. Lett. 2010, 104, 156401. [Google Scholar] [CrossRef]
- Wakabayashi, Y.; Takeya, J.; Kimura, T. Sub-Å Resolution Electron Density Analysis of the Surface of Organic Rubrene Crystals. Phys. Rev. Lett. 2010, 104, 066103. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, Y.; Niederhausen, J.; Machida, S.; Uragami, Y.; Kinjo, H.; Vollmer, A.; Rabe, J.P.; Koch, N.; Ishii, H. Valence band structure of rubrene single crystals in contact with an organic gate dielectric. Org. Electron. 2013, 14, 1825–1832. [Google Scholar] [CrossRef]
- Yamamoto, M.; Nakayama, Y.; Uragami, Y.; Kinjo, H.; Mizuno, Y.; Mase, K.; Koswattage, K.R.; Ishii, H. Electronic Structures of a Well-Defined Organic Hetero-Interface: C60 on Pentacene Single Crystal. E-J. Surf. Sci. Nanotechnol. 2015, 13, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Miyadera, T.; Mitsuta, H.; Ohashi, N.; Taima, T.; Zhou, Y.; Yamanari, T.; Yoshida, Y. Heteroepitaxial growth of C 60 on tetracene single crystal. MRS Proc. 2013, 1501, mrsf12-1501-p03-06. [Google Scholar] [CrossRef]
- Hinderhofer, A.; Schreiber, F. Organic-Organic Heterostructures: Concepts and Applications. ChemPhysChem 2012, 13, 628–643. [Google Scholar] [CrossRef]
- Forrest, S.R. Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques. Chem. Rev. 1997, 97, 1793–1896. [Google Scholar] [CrossRef] [PubMed]
- Hooks, D.E.; Fritz, T.; Ward, M.D. Epitaxy and Molecular Organization on Solid Substrates. Adv. Mater. 2001, 13, 227–241. [Google Scholar] [CrossRef]
- Koma, A. Molecular beam epitaxial growth of organic thin films. Prog. Cryst. Growth Charact. Mater. 1995, 30, 129–152. [Google Scholar] [CrossRef]
- Yang, J.; Yan, D. Weak epitaxy growth of organic semiconductor thin films. Chem. Soc. Rev. 2009, 38, 2634. [Google Scholar] [CrossRef] [PubMed]
- Sassella, A.; Campione, M.; Borghesi, A. Organic epitaxy. Riv. Nuovo Cim. 2008, 31, 457–490. [Google Scholar]
- Wright, J.D. Molecular Crystals, 2nd ed.; Cambridge University Press: Cambridge, UK, 1995; ISBN 978-0-521-46510-6. [Google Scholar]
- Schwoerer, M.; Wolf, H.C. Organic Molecular Solids; WILEY-VCH: Weinheim, Germany, 2007. [Google Scholar]
- Laudise, R.; Kloc, C.; Simpkins, P.; Siegrist, T. Physical vapor growth of organic semiconductors. J. Cryst. Growth 1998, 187, 449–454. [Google Scholar] [CrossRef]
- Nakayama, Y.; Uragami, Y.; Yamamoto, M.; Yonezawa, K.; Mase, K.; Kera, S.; Ishii, H.; Ueno, N. High-resolution core-level photoemission measurements on the pentacene single crystal surface assisted by photoconduction. J. Phys. Condens. Matter 2016, 28, 094001. [Google Scholar] [CrossRef]
- Mizuno, Y.; Yamamoto, M.; Kinjo, H.; Mase, K.; Ishii, H.; Okudaira, K.K.; Yoshida, H.; Nakayama, Y. Effects of the ambient exposure on the electronic states of the clean surface of the pentacene single crystal. Mol. Cryst. Liq. Cryst. 2017, 648, 216–222. [Google Scholar] [CrossRef]
- Bisri, S.Z.; Takenobu, T.; Takahashi, T.; Iwasa, Y. Electron transport in rubrene single-crystal transistors. Appl. Phys. Lett. 2010, 96, 183304. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, Y.; Iwashita, M.; Kikuchi, M.; Tsuruta, R.; Yoshida, K.; Gunjo, Y.; Yabara, Y.; Hosokai, T.; Koganezawa, T.; Izawa, S.; et al. Electronic and Crystallographic Examinations of the Homoepitaxially Grown Rubrene Single Crystals. Materials 2020, 13, 1978. [Google Scholar] [CrossRef]
- Mahmood, A.; Wang, J. A Review of Grazing Incidence Small- and Wide-Angle X-ray Scattering Techniques for Exploring the Film Morphology of Organic Solar Cells. Sol. RRL 2020, 4, 2000337. [Google Scholar] [CrossRef]
- Peng, Z.; Ye, L.; Ade, H. Understanding, quantifying, and controlling the molecular ordering of semiconducting polymers: From novices to experts and amorphous to perfect crystals. Mater. Horiz. 2022, 9, 577–606. [Google Scholar] [CrossRef]
- Tan, W.L.; McNeill, C.R. X-ray diffraction of photovoltaic perovskites: Principles and applications. Appl. Phys. Rev. 2022, 9, 021310. [Google Scholar] [CrossRef]
- Qin, M.; Chan, P.F.; Lu, X. A Systematic Review of Metal Halide Perovskite Crystallization and Film Formation Mechanism Unveiled by In Situ GIWAXS. Adv. Mater. 2021, 33, 2105290. [Google Scholar] [CrossRef] [PubMed]
- Takahara, A.; Higaki, Y.; Hirai, T.; Ishige, R. Application of Synchrotron Radiation X-ray Scattering and Spectroscopy to Soft Matter. Polymers 2020, 12, 1624. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, Y.; Mizuno, Y.; Hosokai, T.; Koganezawa, T.; Tsuruta, R.; Hinderhofer, A.; Gerlach, A.; Broch, K.; Belova, V.; Frank, H.; et al. Epitaxial Growth of an Organic p–n Heterojunction: C 60 on Single-Crystal Pentacene. ACS Appl. Mater. Interfaces 2016, 8, 13499–13505. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, Y.; Tsuruta, R.; Mizuno, Y.; Togami, Y.; Matsuyama, S.; Koganezawa, T.; Hosokai, T. Heteroepitaxy of Perfluoropentacene (C22F14) on the Single Crystal Surface of Pentacene (C22H14). Hyomen Kagaku 2017, 38, 324–329. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K.; Izawa, S.; Ohtsuka, N.; Izumiseki, A.; Tsuruta, R.; Takeuchi, R.; Gunjo, Y.; Nakanishi, Y.; Mase, K.; Koganezawa, T.; et al. Quasi-Homoepitaxial Junction of Organic Semiconductors: A Structurally Seamless but Electronically Abrupt Interface between Rubrene and Bis(trifluoromethyl)dimethylrubrene. J. Phys. Chem. Lett. 2021, 12, 11430–11437. [Google Scholar] [CrossRef]
- Tsuruta, R.; Hosokai, T.; Yamanaka, S.; Yoshida, K.; Mizuno, Y.; Koganezawa, T.; Nakayama, Y. Evolution of crystallinity at a well-defined molecular interface of epitaxial C 60 on the single crystal rubrene. J. Phys. Condens. Matter 2019, 31, 154001. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Inaba, K.; Sato, N. X-ray diffraction reciprocal space mapping study of the thin film phase of pentacene. Appl. Phys. Lett. 2007, 90, 181930. [Google Scholar] [CrossRef] [Green Version]
- Campbell, R.B.; Robertson, J.M.; Trotter, J. The crystal and molecular structure of pentacene. Acta Crystallogr. 1961, 14, 705–711. [Google Scholar] [CrossRef]
- Mattheus, C.C.; Dros, A.B.; Baas, J.; Meetsma, A.; de Boer, J.L.; Palstra, T.T.M. Polymorphism in pentacene. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2001, 57, 939–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.-Y.; Gundlach, D.J.; Nelson, S.F.; Jackson, T.N. Stacked pentacene layer organic thin-film transistors with improved characteristics. IEEE Electron Device Lett. 1997, 18, 606–608. [Google Scholar] [CrossRef]
- Jurchescu, O.D.; Baas, J.; Palstra, T.T.M. Effect of impurities on the mobility of single crystal pentacene. Appl. Phys. Lett. 2004, 84, 3061–3063. [Google Scholar] [CrossRef]
- Koch, N.; Vollmer, A.; Salzmann, I.; Nickel, B.; Weiss, H.; Rabe, J.P. Evidence for Temperature-Dependent Electron Band Dispersion in Pentacene. Phys. Rev. Lett. 2006, 96, 156803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakuta, H.; Hirahara, T.; Matsuda, I.; Nagao, T.; Hasegawa, S.; Ueno, N.; Sakamoto, K. Electronic Structures of the Highest Occupied Molecular Orbital Bands of a Pentacene Ultrathin Film. Phys. Rev. Lett. 2007, 98, 247601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohtomo, M.; Suzuki, T.; Shimada, T.; Hasegawa, T. Band dispersion of quasi-single crystal thin film phase pentacene monolayer studied by angle-resolved photoelectron spectroscopy. Appl. Phys. Lett. 2009, 95, 123308. [Google Scholar] [CrossRef]
- Hatch, R.C.; Huber, D.L.; Höchst, H. HOMO band structure and anisotropic effective hole mass in thin crystalline pentacene films. Phys. Rev. B 2009, 80, 081411. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, Y.; Mizuno, Y.; Hikasa, M.; Yamamoto, M.; Matsunami, M.; Ideta, S.; Tanaka, K.; Ishii, H.; Ueno, N. Single-Crystal Pentacene Valence-Band Dispersion and Its Temperature Dependence. J. Phys. Chem. Lett. 2017, 8, 1259–1264. [Google Scholar] [CrossRef]
- Nakayama, Y.; Hikasa, M.; Moriya, N.; Meissner, M.; Yamaguchi, T.; Yoshida, K.; Murata, M.; Mase, K.; Ueba, T.; Kera, S. Anisotropic valence band dispersion of single crystal pentacene as measured by angle-resolved ultraviolet photoelectron spectroscopy. J. Mater. Res. 2018, 33, 3362–3370. [Google Scholar] [CrossRef]
- Dorset, D.L.; McCourt, M.P. Disorder and the molecular packing of C 60 buckminsterfullerene: A direct electron-crystallographic analysis. Acta Crystallogr. Sect. A Found. Crystallogr. 1994, 50, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Tee, B.C.-K.; Cha, J.J.; Cui, Y.; Chung, J.W.; Lee, S.Y.; Bao, Z. High-Mobility Field-Effect Transistors from Large-Area Solution-Grown Aligned C 60 Single Crystals. J. Am. Chem. Soc. 2012, 134, 2760–2765. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.; Domercq, B.; Kippelen, B. Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions. Appl. Phys. Lett. 2004, 85, 5427–5429. [Google Scholar] [CrossRef]
- Itaka, K.; Yamashiro, M.; Yamaguchi, J.; Haemori, M.; Yaginuma, S.; Matsumoto, Y.; Kondo, M.; Koinuma, H. High-Mobility C60 Field-Effect Transistors Fabricated on Molecular- Wetting Controlled Substrates. Adv. Mater. 2006, 18, 1713–1716. [Google Scholar] [CrossRef]
- Cantrell, R.; Clancy, P. A computational study of surface diffusion of C60 on pentacene. Surf. Sci. 2008, 602, 3499–3505. [Google Scholar] [CrossRef]
- Salzmann, I.; Duhm, S.; Opitz, R.; Johnson, R.L.; Rabe, J.P.; Koch, N. Structural and electronic properties of pentacene-fullerene heterojunctions. J. Appl. Phys. 2008, 104, 114518. [Google Scholar] [CrossRef] [Green Version]
- Conrad, B.R.; Tosado, J.; Dutton, G.; Dougherty, D.B.; Jin, W.; Bonnen, T.; Schuldenfrei, A.; Cullen, W.G.; Williams, E.D.; Reutt-Robey, J.E.; et al. C60 cluster formation at interfaces with pentacene thin-film phases. Appl. Phys. Lett. 2009, 95, 213302. [Google Scholar] [CrossRef]
- Fu, Y.-T.; Risko, C.; Brédas, J.-L. Intermixing at the Pentacene-Fullerene Bilayer Interface: A Molecular Dynamics Study. Adv. Mater. 2013, 25, 878–882. [Google Scholar] [CrossRef] [PubMed]
- Breuer, T.; Witte, G. Diffusion-Controlled Growth of Molecular Heterostructures: Fabrication of Two-, One-, and Zero-Dimensional C 60 Nanostructures on Pentacene Substrates. ACS Appl. Mater. Interfaces 2013, 5, 9740–9745. [Google Scholar] [CrossRef] [PubMed]
- Kroll, G.H.; Benning, P.J.; Chen, Y.; Ohno, T.R.; Weaver, J.H.; Chibante, L.P.F.; Smalley, R.E. Interaction of O2 with C60: Photon-induced oxidation. Chem. Phys. Lett. 1991, 181, 112–116. [Google Scholar] [CrossRef]
- Breuer, T.; Karthäuser, A.; Witte, G. Effects of Molecular Orientation in Acceptor-Donor Interfaces between Pentacene and C 60 and Diels-Alder Adduct Formation at the Molecular Interface. Adv. Mater. Interfaces 2016, 3, 1500452. [Google Scholar] [CrossRef]
- Tsuruta, R.; Mizuno, Y.; HosokaiI, T.; Koganezawa, T.; Ishii, H.; Nakayama, Y. Structural Determination of the Epitaxial C60 Overlayer on the Pentacene Single Crystal by Grazing Incidence X-ray Diffraction. Hyomen Kagaku (J. Surf. Sci. Soc. Jpn.) 2016, 37, 429–434. [Google Scholar] [CrossRef]
- Hiramoto, M.; Kubo, M.; Shinmura, Y.; Ishiyama, N.; Kaji, T.; Sakai, K.; Ohno, T.; Izaki, M. Bandgap Science for Organic Solar Cells. Electronics 2014, 3, 351–380. [Google Scholar] [CrossRef]
- Tsuruta, R.; Mizuno, Y.; Hosokai, T.; Koganezawa, T.; Ishii, H.; Nakayama, Y. Crystallinity of the epitaxial heterojunction of C 60 on single crystal pentacene. J. Cryst. Growth 2017, 468, 770–773. [Google Scholar] [CrossRef]
- Nakayama, Y.; Tsuruta, R.; Hinderhofer, A.; Mizuno, Y.; Broch, K.; Gerlach, A.; Koganezawa, T.; Hosokai, T.; Schreiber, F. Temperature Dependent Epitaxial Growth of C 60 Overlayers on Single Crystal Pentacene. Adv. Mater. Interfaces 2018, 5, 1800084. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Suzuki, T.; Kobayashi, M.; Gao, Y.; Fukai, Y.; Inoue, Y.; Sato, F.; Tokito, S. Perfluoropentacene: High-Performance p−n Junctions and Complementary Circuits with Pentacene. J. Am. Chem. Soc. 2004, 126, 8138–8140. [Google Scholar] [CrossRef] [PubMed]
- Salzmann, I.; Duhm, S.; Heimel, G.; Rabe, J.P.; Koch, N.; Oehzelt, M.; Sakamoto, Y.; Suzuki, T. Structural Order in Perfluoropentacene Thin Films and Heterostructures with Pentacene. Langmuir 2008, 24, 7294–7298. [Google Scholar] [CrossRef]
- Breuer, T.; Witte, G. Thermally activated intermixture in pentacene-perfluoropentacene heterostructures. J. Chem. Phys. 2013, 138, 114901. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, Y.; Tsuruta, R.; Moriya, N.; Hikasa, M.; Meissner, M.; Yamaguchi, T.; Mizuno, Y.; Suzuki, T.; Koganezawa, T.; Hosokai, T.; et al. Widely Dispersed Intermolecular Valence Bands of Epitaxially Grown Perfluoropentacene on Pentacene Single Crystals. J. Phys. Chem. Lett. 2019, 10, 1312–1318. [Google Scholar] [CrossRef]
- Winkler, M.; Houk, K.N. Nitrogen-Rich Oligoacenes: Candidates for n-Channel Organic Semiconductors. J. Am. Chem. Soc. 2007, 129, 1805–1815. [Google Scholar] [CrossRef]
- Richards, G.J.; Hill, J.P.; Subbaiyan, N.K.; D’Souza, F.; Karr, P.A.; Elsegood, M.R.J.; Teat, S.J.; Mori, T.; Ariga, K. Pyrazinacenes: Aza Analogues of Acenes. J. Org. Chem. 2009, 74, 8914–8923. [Google Scholar] [CrossRef] [PubMed]
- Bunz, U.H.F.; Engelhart, J.U.; Lindner, B.D.; Schaffroth, M. Large N-Heteroacenes: New Tricks for Very Old Dogs? Angew. Chem. Int. Ed. 2013, 52, 3810–3821. [Google Scholar] [CrossRef] [PubMed]
- Ajdari, M.; Schmitt, T.; Hoffmann, M.; Maass, F.; Reiss, H.; Bunz, U.H.F.; Dreuw, A.; Tegeder, P. Electronic Properties of 6,13-Diazapentacene Adsorbed on Au(111): A Quantitative Determination of Transport, Singlet and Triplet States, and Electronic Spectra. J. Phys. Chem. C 2020, 124, 13196–13205. [Google Scholar] [CrossRef]
- Isoda, K.; Nakamura, M.; Tatenuma, T.; Ogata, H.; Sugaya, T.; Tadokoro, M. Synthesis and Characterization of Electron-accepting Nonsubstituted Tetraazaacene Derivatives. Chem. Lett. 2012, 41, 937–939. [Google Scholar] [CrossRef]
- Hino, S.; Kato, M.; Nakamura, M.; Tadokoro, M. Photoelectron Spectroscopy of a New Type Electron Acceptor, 5,6,11,12-Tetraazanaphthacene. Mol. Cryst. Liq. Cryst. 2006, 455, 205–209. [Google Scholar] [CrossRef]
- Okamoto, T.; Kumagai, S.; Fukuzaki, E.; Ishii, H.; Watanabe, G.; Niitsu, N.; Annaka, T.; Yamagishi, M.; Tani, Y.; Sugiura, H.; et al. Robust, high-performance n-type organic semiconductors. Sci. Adv. 2020, 6, eaaz0632. [Google Scholar] [CrossRef] [PubMed]
- Gunjo, Y.; Kamebuchi, H.; Tsuruta, R.; Iwashita, M.; Takahashi, K.; Takeuchi, R.; Kanai, K.; Koganezawa, T.; Mase, K.; Tadokoro, M.; et al. Interface Structures and Electronic States of Epitaxial Tetraazanaphthacene on Single-Crystal Pentacene. Materials 2021, 14, 1088. [Google Scholar] [CrossRef] [PubMed]
- Sundar, V.C.; Zaumseil, J.; Podzorov, V.; Menard, E.; Willett, R.L.; Someya, T.; Gershenson, M.E.; Rogers, J.A. Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals. Science 2004, 303, 1644–1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podzorov, V.; Menard, E.; Borissov, A.; Kiryukhin, V.; Rogers, J.A.; Gershenson, M.E. Intrinsic Charge Transport on the Surface of Organic Semiconductors. Phys. Rev. Lett. 2004, 93, 086602. [Google Scholar] [CrossRef] [Green Version]
- Takeya, J.; Yamagishi, M.; Tominari, Y.; Hirahara, R.; Nakazawa, Y.; Nishikawa, T.; Kawase, T.; Shimoda, T.; Ogawa, S. Very high-mobility organic single-crystal transistors with in-crystal conduction channels. Appl. Phys. Lett. 2007, 90, 102120. [Google Scholar] [CrossRef]
- Najafov, H.; Lee, B.; Zhou, Q.; Feldman, L.C.; Podzorov, V. Observation of long-range exciton diffusion in highly ordered organic semiconductors. Nat. Mater. 2010, 9, 938–943. [Google Scholar] [CrossRef]
- Ding, H.; Reese, C.; Mäkinen, A.J.; Bao, Z.; Gao, Y. Band structure measurement of organic single crystal with angle-resolved photoemission. Appl. Phys. Lett. 2010, 96, 222106. [Google Scholar] [CrossRef]
- Nakayama, Y.; Uragami, Y.; Machida, S.; Koswattage, K.R.; Yoshimura, D.; Setoyama, H.; Okajima, T.; Mase, K.; Ishii, H. Full Picture of Valence Band Structure of Rubrene Single Crystals Probed by Angle-Resolved and Excitation-Energy-Dependent Photoelectron Spectroscopy. Appl. Phys. Express 2012, 5, 111601. [Google Scholar] [CrossRef]
- Vollmer, A.; Ovsyannikov, R.; Gorgoi, M.; Krause, S.; Oehzelt, M.; Lindblad, A.; Mårtensson, N.; Svensson, S.; Karlsson, P.; Lundvuist, M.; et al. Two dimensional band structure mapping of organic single crystals using the new generation electron energy analyzer ARTOF. J. Electron Spectros. Relat. Phenom. 2012, 185, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Ueba, T.; Park, J.; Terawaki, R.; Watanabe, Y.; Yamada, T.; Munakata, T. Unoccupied electronic structure and molecular orientation of rubrene; from evaporated films to single crystals. Surf. Sci. 2016, 649, 7–13. [Google Scholar] [CrossRef]
- Bussolotti, F.; Yang, J.; Yamaguchi, T.; Yonezawa, K.; Sato, K.; Matsunami, M.; Tanaka, K.; Nakayama, Y.; Ishii, H.; Ueno, N.; et al. Hole-phonon coupling effect on the band dispersion of organic molecular semiconductors. Nat. Commun. 2017, 8, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurchescu, O.D.; Meetsma, A.; Palstra, T.T.M. Low-temperature structure of rubrene single crystals grown by vapor transport. Acta Crystallogr. Sect. B Struct. Sci. 2006, 62, 330–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, B.D.; Checco, A.; Pindak, R.; Siegrist, T.; Kloc, C. Dislocations and grain boundaries in semiconducting rubrene single-crystals. J. Cryst. Growth 2006, 290, 479–484. [Google Scholar] [CrossRef]
- Taima, T.; Sakai, J.; Yamanari, T.; Saito, K. Realization of Large Open-Circuit Photovoltage in Organic Thin-Film Solar Cells by Controlling Measurement Environment. Jpn. J. Appl. Phys. 2006, 45, L995–L997. [Google Scholar] [CrossRef]
- Pandey, A.K.; Nunzi, J.-M. Rubrene/Fullerene Heterostructures with a Half-Gap Electroluminescence Threshold and Large Photovoltage. Adv. Mater. 2007, 19, 3613–3617. [Google Scholar] [CrossRef]
- Ng, A.M.C.; Djurišić, A.B.; Chan, W.-K.; Nunzi, J.-M. Near infrared emission in rubrene:fullerene heterojunction devices. Chem. Phys. Lett. 2009, 474, 141–145. [Google Scholar] [CrossRef]
- Pandey, A.K. Highly efficient spin-conversion effect leading to energy up-converted electroluminescence in singlet fission photovoltaics. Sci. Rep. 2015, 5, 7787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engmann, S.; Barito, A.J.; Bittle, E.G.; Giebink, N.C.; Richter, L.J.; Gundlach, D.J. Higher order effects in organic LEDs with sub-bandgap turn-on. Nat. Commun. 2019, 10, 227. [Google Scholar] [CrossRef] [PubMed]
- Kielar, M.; Hamid, T.; Wu, L.; Windels, F.; Sah, P.; Pandey, A.K. Organic Optoelectronic Diodes as Tactile Sensors for Soft-Touch Applications. ACS Appl. Mater. Interfaces 2019, 11, 21775–21783. [Google Scholar] [CrossRef] [PubMed]
- Kielar, M.; Gooch, H.; Xu, L.; Pandey, A.K.; Sah, P. Direct Detection of Neuronal Activity Using Organic Photodetectors. ACS Photonics 2021, 8, 228–237. [Google Scholar] [CrossRef]
- Pinto, R.M.; Maçôas, E.M.S.; Alves, H. Enhanced conductivity and photoresponse at a rubrene single-crystal—PCBM film interface. J. Mater. Chem. C 2014, 2, 3639–3644. [Google Scholar] [CrossRef]
- Fusella, M.A.; Brigeman, A.N.; Welborn, M.; Purdum, G.E.; Yan, Y.; Schaller, R.D.; Lin, Y.L.; Loo, Y.; Van Voorhis, T.; Giebink, N.C.; et al. Band-like Charge Photogeneration at a Crystalline Organic Donor/Acceptor Interface. Adv. Energy Mater. 2018, 8, 1701494. [Google Scholar] [CrossRef]
- Mitsuta, H.; Miyadera, T.; Ohashi, N.; Zhou, Y.; Taima, T.; Koganezawa, T.; Yoshida, Y.; Tamura, M. Epitaxial Growth of C 60 on Rubrene Single Crystals for a Highly Ordered Organic Donor/Acceptor Interface. Cryst. Growth Des. 2017, 17, 4622–4627. [Google Scholar] [CrossRef]
- Tsuruta, R.; Mori, T.; Yamanaka, S.; Hosokai, T.; Koganezawa, T.; Nakayama, Y. Well-Ordered Organic pn Heterojunction of an Epitaxial Overlayer of C60 on a High-Mobility p-type Organic Semiconductor Rubrene Single Crystal. SPring-8 Doc. 2017, 2016B, 112–114. [Google Scholar]
- Poelsema, B.; Kunkel, R.; Nagel, N.; Becker, A.F.; Rosenfeld, G.; Verheij, L.K.; Comsa, G. New phenomena in homoepitaxial growth of metals. Appl. Phys. A Solids Surf. 1991, 53, 369–376. [Google Scholar] [CrossRef]
- Voigtländer, B. Fundamental processes in Si/Si and Ge/Si epitaxy studied by scanning tunneling microscopy during growth. Surf. Sci. Rep. 2001, 43, 127–254. [Google Scholar] [CrossRef]
- Evans, J.W.; Thiel, P.A.; Bartelt, M.C. Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds. Surf. Sci. Rep. 2006, 61, 1–128. [Google Scholar] [CrossRef]
- Sassella, A.; Borghesi, A.; Campione, M.; Tavazzi, S.; Goletti, C.; Bussetti, G.; Chiaradia, P. Direct observation of the epitaxial growth of molecular layers on molecular single crystals. Appl. Phys. Lett. 2006, 89, 261905. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, L.; Duan, L.; Qiu, Y. Homoepitaxy Growth of Well-Ordered Rubrene Thin Films. Cryst. Growth Des. 2008, 8, 1617–1622. [Google Scholar] [CrossRef]
- Fusella, M.A.; Schreiber, F.; Abbasi, K.; Kim, J.J.; Briseno, A.L.; Rand, B.P. Homoepitaxy of Crystalline Rubrene Thin Films. Nano Lett. 2017, 17, 3040–3046. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, C.; Izawa, S.; Shinmura, Y.; Kikuchi, M.; Watase, S.; Izaki, M.; Naito, H.; Hiramoto, M. Hall Effect in Bulk-Doped Organic Single Crystals. Adv. Mater. 2017, 29, 1605619. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, M.; Makmuang, S.; Izawa, S.; Wongravee, K.; Hiramoto, M. Doped organic single-crystal photovoltaic cells. Org. Electron. 2019, 64, 92–96. [Google Scholar] [CrossRef]
- Hiramoto, M.; Kikuchi, M.; Izawa, S. Parts-per-Million-Level Doping Effects in Organic Semiconductor Films and Organic Single Crystals. Adv. Mater. 2019, 31, 1801236. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.-J.; Sawatzki, M.; Darbandy, G.; Talnack, F.; Vahland, J.; Malfois, M.; Kloes, A.; Mannsfeld, S.; Kleemann, H.; Leo, K. Organic bipolar transistors. Nature 2022, 606, 700–705. [Google Scholar] [CrossRef]
- Xie, W.; Prabhumirashi, P.L.; Nakayama, Y.; McGarry, K.A.; Geier, M.L.; Uragami, Y.; Mase, K.; Douglas, C.J.; Ishii, H.; Hersam, M.C.; et al. Utilizing Carbon Nanotube Electrodes to Improve Charge Injection and Transport in Bis(trifluoromethyl)-dimethyl-rubrene Ambipolar Single Crystal Transistors. ACS Nano 2013, 7, 10245–10256. [Google Scholar] [CrossRef]
- McGarry, K.A.; Xie, W.; Sutton, C.; Risko, C.; Wu, Y.; Young, V.G.; Brédas, J.-L.; Frisbie, C.D.; Douglas, C.J. Rubrene-Based Single-Crystal Organic Semiconductors: Synthesis, Electronic Structure, and Charge-Transport Properties. Chem. Mater. 2013, 25, 2254–2263. [Google Scholar] [CrossRef]
- Mastrogiovanni, D.D.T.; Mayer, J.; Wan, A.S.; Vishnyakov, A.; Neimark, A.V.; Podzorov, V.; Feldman, L.C.; Garfunkel, E. Oxygen Incorporation in Rubrene Single Crystals. Sci. Rep. 2015, 4, 4753. [Google Scholar] [CrossRef] [Green Version]
- Ding, R.; An, M.; Feng, J.; Sun, H. Organic Single-Crystalline Semiconductors for Light-Emitting Applications: Recent Advances and Developments. Laser Photon. Rev. 2019, 13, 1900009. [Google Scholar] [CrossRef]
- Qin, Z.; Gao, H.; Dong, H.; Hu, W. Organic Light-Emitting Transistors Entering a New Development Stage. Adv. Mater. 2021, 33, 2007149. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Liu, F.; Wang, F.; Wang, J.; Li, M.; Wen, Y.; Wang, L.; Wang, G.; He, J.; Jiang, C. Configuration-dependent anti-ambipolar van der Waals p–n heterostructures based on pentacene single crystal and MoS2. Nanoscale 2017, 9, 7519–7525. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.; On, S.; Lee, S.B.; Cho, K.; Kim, J. Negative Transconductance Heterojunction Organic Transistors and their Application to Full-Swing Ternary Circuits. Adv. Mater. 2019, 31, 1808265. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, R.; Honma, K.; Nakaharai, S.; Kanai, K.; Wakayama, Y. Electrically Reconfigurable Organic Logic Gates: A Promising Perspective on a Dual-Gate Antiambipolar Transistor. Adv. Mater. 2022, 34, 2109491. [Google Scholar] [CrossRef]
- Kikuchi, M.; Takagi, K.; Naito, H.; Hiramoto, M. Single crystal organic photovoltaic cells using lateral electron transport. Org. Electron. 2017, 41, 118–121. [Google Scholar] [CrossRef]
- Kikuchi, M.; Hirota, M.; Kunawong, T.; Shinmura, Y.; Abe, M.; Sadamitsu, Y.; Moh, A.M.; Izawa, S.; Izaki, M.; Naito, H.; et al. Lateral Alternating Donor/Acceptor Multilayered Junction for Organic Solar Cells. ACS Appl. Energy Mater. 2019, 2, 2087–2093. [Google Scholar] [CrossRef]
- Nakayama, Y.; Machida, S.; Tsunami, D.; Kimura, Y.; Niwano, M.; Noguchi, Y.; Ishii, H. Photoemission measurement of extremely insulating materials: Capacitive photocurrent detection in photoelectron yield spectroscopy. Appl. Phys. Lett. 2008, 92, 153306. [Google Scholar] [CrossRef]
- Ishii, H.; Kinjo, H.; Sato, T.; Machida, S.; Nakayama, Y. Photoelectron Yield Spectroscopy for Organic Materials and Interfaces. In Electronic Processes in Organic Electronics: Bridging Nanostructure, Electronic States and Device Properties; Springer: Berlin/Heidelberg, Germany, 2015; pp. 131–155. ISBN 9784431552062. [Google Scholar]
- Nakayama, Y.; Ishii, H. Exploration into the Valence Band Structures of Organic Semiconductors by Angle-Resolved Photoelectron Spectroscopy. In Surface Science Tools for Nanomaterials Characterization; Springer: Berlin/Heidelberg, Germany, 2015; pp. 367–404. ISBN 9783662445518. [Google Scholar]
- Machida, S.; Ozawa, Y.; Takahashi, J.; Tokairin, H.; Nakayama, Y.; Ishii, H. Low-Energy Photoemission Study of C 60/Rubrene/Au Interfaces in Practical Device Thickness. Appl. Phys. Express 2013, 6, 025801. [Google Scholar] [CrossRef]
- Ozawa, Y.; Nakayama, Y.; Machida, S.; Kinjo, H.; Ishii, H. Maximum probing depth of low-energy photoelectrons in an amorphous organic semiconductor film. J. Electron Spectros. Relat. Phenom. 2014, 197, 17–21. [Google Scholar] [CrossRef]
- Nakayama, Y.; Nguyen, T.L.; Ozawa, Y.; Machida, S.; Sato, T.; Tokairin, H.; Noguchi, Y.; Ishii, H. Complete Demonstration of the Valence Electronic Structure Inside a Practical Organic Solar Cell Probed by Low Energy Photoemission. Adv. Energy Mater. 2014, 4, 1301354. [Google Scholar] [CrossRef]
- Nakayama, Y.; Kera, S.; Ueno, N. Photoelectron spectroscopy on single crystals of organic semiconductors: Experimental electronic band structure for optoelectronic properties. J. Mater. Chem. C 2020, 8, 9090–9132. [Google Scholar] [CrossRef]
- Hasegawa, S.; Mori, T.; Imaeda, K.; Tanaka, S.; Yamashita, Y.; Inokuchi, H.; Fujimoto, H.; Seki, K.; Ueno, N. Intermolecular energy-band dispersion in oriented thin films of bis(1,2,5-thiadiazolo)- p -quinobis(1,3-dithiole) by angle-resolved photoemission. J. Chem. Phys. 1994, 100, 6969–6973. [Google Scholar] [CrossRef]
- Aghdassi, N.; Wang, Q.; Ji, R.-R.; Wang, B.; Fan, J.; Duhm, S. Ultraviolet photoelectron spectroscopy reveals energy-band dispersion for π-stacked 7,8,15,16-tetraazaterrylene thin films in a donor–acceptor bulk heterojunction. Nanotechnology 2018, 29, 194002. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, Y.; Sudo, K.; Ohashi, N.; Kera, S.; Watanabe, Y. Interface electronic structure and valence band dispersion of bis(1,2,5-thiadiazolo)-p-quinobis(1,3-dithiole) on polycrystalline Au electrodes. Electron. Struct. 2021, 3, 024006. [Google Scholar] [CrossRef]
- Andrews, P.T.; Collins, I.R.; Inglesfeld, J.E. Inverse photoemission and how it is used. Unoccupied Electron. States 1992, 69, 243–276. [Google Scholar]
- Yoshida, H. Near-ultraviolet inverse photoemission spectroscopy using ultra-low energy electrons. Chem. Phys. Lett. 2012, 539, 180–185. [Google Scholar] [CrossRef] [Green Version]
- Sato, H.; Yamada, Y.; Ishii, H.; Yoshida, H. Conduction band structure of high-mobility organic semiconductors and partially dressed polaron formation. Nat. Mater. 2022, 21, 910–916. [Google Scholar] [CrossRef]
- Stein, A.; Rolf, D.; Lotze, C.; Günther, B.; Gade, L.H.; Franke, K.J.; Tegeder, P. Band Formation at Interfaces Between N-Heteropolycycles and Gold Electrodes. J. Phys. Chem. Lett. 2021, 12, 947–951. [Google Scholar] [CrossRef]
- Iwasawa, M.; Tsuruta, R.; Nakayama, Y.; Sasaki, M.; Hosokai, T.; Lee, S.; Fukumoto, K.; Yamada, Y. Exciton Dissociation and Electron Transfer at a Well-Defined Organic Interface of an Epitaxial C 60 Layer on a Pentacene Single Crystal. J. Phys. Chem. C 2020, 124, 13572–13579. [Google Scholar] [CrossRef]
- Fukami, Y.; Iwasawa, M.; Sasaki, M.; Hosokai, T.; Nakanotani, H.; Adachi, C.; Fukumoto, K.; Yamada, Y. Direct Observation of Photoexcited Electron Dynamics in Organic Solids Exhibiting Thermally Activated Delayed Fluorescence via Time-Resolved Photoelectron Emission Microscopy. Adv. Opt. Mater. 2021, 9, 2100619. [Google Scholar] [CrossRef]
- Chan, W.-L.; Ligges, M.; Jailaubekov, A.; Kaake, L.; Miaja-Avila, L.; Zhu, X.-Y. Observing the Multiexciton State in Singlet Fission and Ensuing Ultrafast Multielectron Transfer. Science 2011, 334, 1541–1545. [Google Scholar] [CrossRef] [PubMed]
- Hosokai, T.; Matsuzaki, H.; Furube, A.; Nakamura, K. Photoelectron detection from transient species in organic semiconducting thin films by dual laser pulse irradiation. Appl. Phys. Express 2017, 10, 022401. [Google Scholar] [CrossRef]
- Madéo, J.; Man, M.K.L.; Sahoo, C.; Campbell, M.; Pareek, V.; Wong, E.L.; Al-Mahboob, A.; Chan, N.S.; Karmakar, A.; Mariserla, B.M.K.; et al. Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors. Science 2020, 370, 1199–1204. [Google Scholar] [CrossRef] [PubMed]
- Sueyoshi, T.; Fukagawa, H.; Ono, M.; Kera, S.; Ueno, N. Low-density band-gap states in pentacene thin films probed with ultrahigh-sensitivity ultraviolet photoelectron spectroscopy. Appl. Phys. Lett. 2009, 95, 183303. [Google Scholar] [CrossRef] [Green Version]
- Bussolotti, F.; Kera, S.; Kudo, K.; Kahn, A.; Ueno, N. Gap states in Pentacene Thin Film Induced by Inert Gas Exposure. Phys. Rev. Lett. 2013, 110, 267602. [Google Scholar] [CrossRef] [Green Version]
- Kinjo, H.; Lim, H.; Sato, T.; Noguchi, Y.; Nakayama, Y.; Ishii, H. Significant relaxation of residual negative carrier in polar Alq 3 film directly detected by high-sensitivity photoemission. Appl. Phys. Express 2016, 9, 021601. [Google Scholar] [CrossRef]
- Yamanaka, S.; Tonami, K.; Iwashita, M.; Yoshida, K.; Takeuchi, R.; Ideta, S.; Tanaka, K.; Mase, K.; Yamada, K.; Yoshida, H.; et al. High sensitivity detection of the frontier electronic states of CH 3 NH 3 PbI 3 single crystals by low energy excitation. Appl. Phys. Express 2019, 12, 051009. [Google Scholar] [CrossRef]
- Levine, I.; Shimizu, K.; Lomuscio, A.; Kulbak, M.; Rehermann, C.; Zohar, A.; Abdi-Jalebi, M.; Zhao, B.; Siebentritt, S.; Zu, F.; et al. Direct Probing of Gap States and Their Passivation in Halide Perovskites by High-Sensitivity, Variable Energy Ultraviolet Photoelectron Spectroscopy. J. Phys. Chem. C 2021, 125, 5217–5225. [Google Scholar] [CrossRef]
- Roth, F.; Schuster, R.; König, A.; Knupfer, M.; Berger, H. Momentum dependence of the excitons in pentacene. J. Chem. Phys. 2012, 136, 204708. [Google Scholar] [CrossRef] [Green Version]
- Ibach, H.; Bocquet, F.C.; Sforzini, J.; Soubatch, S.; Tautz, F.S. Electron energy loss spectroscopy with parallel readout of energy and momentum. Rev. Sci. Instrum. 2017, 88, 033903. [Google Scholar] [CrossRef] [Green Version]
- Yamamura, A.; Watanabe, S.; Uno, M.; Mitani, M.; Mitsui, C.; Tsurumi, J.; Isahaya, N.; Kanaoka, Y.; Okamoto, T.; Takeya, J. Wafer-scale, layer-controlled organic single crystals for high-speed circuit operation. Sci. Adv. 2018, 4, eaao5758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Duan, S.; Zhang, X.; Hu, W. Growing two-dimensional single crystals of organic semiconductors on liquid surfaces. Appl. Phys. Lett. 2021, 119, 210501. [Google Scholar] [CrossRef]
- Fan, C.; Zoombelt, A.P.; Jiang, H.; Fu, W.; Wu, J.; Yuan, W.; Wang, Y.; Li, H.; Chen, H.; Bao, Z. Solution-Grown Organic Single-Crystalline p-n Junctions with Ambipolar Charge Transport. Adv. Mater. 2013, 25, 5762–5766. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Fan, C.; Fu, W.; Xin, H.L.; Chen, H. Solution-Grown Organic Single-Crystalline Donor-Acceptor Heterojunctions for Photovoltaics. Angew. Chem. Int. Ed. 2015, 54, 956–960. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, T.; Zhang, Y.; Wang, S.; Li, X.; Xiao, Y.; Hou, X.; Liu, Z.; Shi, W.; Dennis, T.J.S. Organic Single-Crystalline Donor-Acceptor Heterojunctions with Ambipolar Band-Like Charge Transport for Photovoltaics. Adv. Mater. Interfaces 2018, 5, 1800336. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.; Takahashi, K.; Ren, J.; Wu, R.; Cai, H.; Wang, J.; Xin, H.L.; Miao, Q.; Yamada, H.; et al. Organic Heterojunctions Formed by Interfacing Two Single Crystals from a Mixed Solution. J. Am. Chem. Soc. 2019, 141, 10007–10015. [Google Scholar] [CrossRef]
- Wu, R.; Peng, B.; Li, H.; Li, H. Scaling Up Principles for Solution-Processed Organic Single-Crystalline Heterojunctions. Chem. Mater. 2021, 33, 19–38. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakayama, Y.; Tsuruta, R.; Koganezawa, T. ‘Molecular Beam Epitaxy’ on Organic Semiconductor Single Crystals: Characterization of Well-Defined Molecular Interfaces by Synchrotron Radiation X-ray Diffraction Techniques. Materials 2022, 15, 7119. https://doi.org/10.3390/ma15207119
Nakayama Y, Tsuruta R, Koganezawa T. ‘Molecular Beam Epitaxy’ on Organic Semiconductor Single Crystals: Characterization of Well-Defined Molecular Interfaces by Synchrotron Radiation X-ray Diffraction Techniques. Materials. 2022; 15(20):7119. https://doi.org/10.3390/ma15207119
Chicago/Turabian StyleNakayama, Yasuo, Ryohei Tsuruta, and Tomoyuki Koganezawa. 2022. "‘Molecular Beam Epitaxy’ on Organic Semiconductor Single Crystals: Characterization of Well-Defined Molecular Interfaces by Synchrotron Radiation X-ray Diffraction Techniques" Materials 15, no. 20: 7119. https://doi.org/10.3390/ma15207119
APA StyleNakayama, Y., Tsuruta, R., & Koganezawa, T. (2022). ‘Molecular Beam Epitaxy’ on Organic Semiconductor Single Crystals: Characterization of Well-Defined Molecular Interfaces by Synchrotron Radiation X-ray Diffraction Techniques. Materials, 15(20), 7119. https://doi.org/10.3390/ma15207119