Synthesis of Bimetallic FeCu-MOF and Its Performance as Catalyst of Peroxymonosulfate for Degradation of Methylene Blue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of FeCu-MOF
2.3. The Catalytic Performance of FeCu-MOF
2.4. Analytical Methods
3. Results and Discussion
3.1. Characterization of FeCu-MOF
3.1.1. Crystallographic Structure
3.1.2. Morphology Characterization
3.2. Catalytic Performance
3.3. Effects of Preparation Condition
3.3.1. Effect of PMS Concentration and Catalyst Dosage
3.3.2. Effect of Initial MB Concentration and pH
3.3.3. Effect of Common Anions and Radical Scavengers
3.4. Reusability of FeCu-MOF
3.5. Possible Mechanism of PMS Activation by FeCu-MOF and MB Removal Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Rodríguez-Chueca, J.; Barahona-García, E.; Blanco-Gutiérrez, V.; Isidoro-García, L.; Dos santos-García, A.J. Magnetic CoFe2O4 ferrite for peroxymonosulfate activation for disinfection of wastewater. Chem. Eng. J. 2020, 398, 125606. [Google Scholar] [CrossRef]
- Han, C.; Duan, X.; Zhang, M.; Fu, W.; Duan, X.; Ma, W.; Liu, S.; Wang, S.; Zhou, X. Role of electronic properties in partition of radical and nonradical processes of carbocatalysis toward peroxymonosulfate activation. Carbon 2019, 153, 73–80. [Google Scholar] [CrossRef]
- Li, H.; Xu, S.; Du, J.; Tang, J.; Zhou, Q. Cu@Co-MOFs as a novel catalyst of peroxymonosulfate for the efficient removal of methylene blue. RSC Adv. 2019, 9, 9410–9420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahsan, M.A.; Jabbari, V.; Imam, M.A.; Castro, E.; Kim, H.; Curry, M.L.; Valles-Rosales, D.J.; Noveron, J.C. Nanoscale nickel metal organic framework decorated over graphene oxide and carbon nanotubes for water remediation. Sci. Total Environ. 2020, 698, 134214. [Google Scholar] [CrossRef]
- Zhang, K.D.; Tsai, F.C.; Ma, N.; Xia, Y.; Liu, H.L.; Zhan, X.Q.; Yu, X.Y.; Zeng, X.Z.; Jiang, T.; Shi, D.; et al. Adsorption Behavior of High Stable Zr-Based MOFs for the Removal of Acid Organic Dye from Water. Materials 2017, 10, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, J.Y.; Ning, X.A.; Sun, J.; Song, J.; Lu, J.; Cai, H.L.; Hong, Y.X. Toxicity evaluation of textile dyeing effluent and its possible relationship with chemical oxygen demand. Ecotoxicol. Environ. Saf. 2018, 166, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Nohynek, G.J.; Fautz, R.; Benech-Kieffer, F.; Toutain, H. Toxicity and human health risk of hair dyes. Food Chem.Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2004, 42, 517–543. [Google Scholar] [CrossRef]
- Jiang, L.L.; Li, K.; Yan, D.L.; Yang, M.F.; Ma, L.; Xie, L.Z. Toxicity Assessment of 4 Azo Dyes in Zebrafish Embryos. Int. J. Toxicol. 2020, 39, 115–123. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Yao, Y.; Miao, X.; Chen, J.; Tang, J. Nanoporous bimetallic metal-organic framework (FeCo-BDC) as a novel catalyst for efficient removal of organic contaminants. Environ. Pollut. 2019, 255, 113337. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Zhang, D.; Lan, Y.; Guo, J. CuO-Co3O4@CeO2 as a heterogeneous catalyst for efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate. J. Hazard. Mater. 2020, 381, 121209. [Google Scholar] [CrossRef]
- Yang, Q.; Choi, H.; Al-Abed, S.R.; Dionysiou, D.D. Iron–cobalt mixed oxide nanocatalysts: Heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications. Appl. Catal. B Environ. 2009, 88, 462–469. [Google Scholar] [CrossRef]
- Li, H.; Yang, Z.; Lu, S.; Su, L.; Wang, C.; Huang, J.; Zhou, J.; Tang, J.; Huang, M. Nano-porous bimetallic CuCo-MOF-74 with coordinatively unsaturated metal sites for peroxymonosulfate activation to eliminate organic pollutants: Performance and mechanism. Chemosphere 2021, 273, 129643. [Google Scholar] [CrossRef]
- Liang, G.; Yang, Z.; Wang, Z.; Cai, X.; Zhang, X.; Xie, X. Relying on the non-radical pathways for selective degradation organic pollutants in Fe and Cu co-doped biochar/peroxymonosulfate system: The roles of Cu, Fe, defect sites and ketonic group. Sep. Purif. Technol. 2021, 279, 119697. [Google Scholar] [CrossRef]
- Alshorifi, F.T.; Alswat, A.A.; Mannaa, M.A.; Alotaibi, M.T.; El-Bahy, S.M.; Salama, R.S. Facile and Green Synthesis of Silver Quantum Dots Immobilized onto a Polymeric CTS-PEO Blend for the Photocatalytic Degradation of p-Nitrophenol. ACS Omega 2021, 6, 30432–30441. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhu, P.; Duan, M.; Li, J.; Ren, Z.; Wang, P. Fabrication of a magnetically separable and dual Z-scheme PANI/Ag3PO4/NiFe2O4 composite with enhanced visible-light photocatalytic activity for organic pollutant elimination. Appl. Surf. Sci. 2019, 486, 198–211. [Google Scholar] [CrossRef]
- Deng, Y.; Tang, L.; Feng, C.; Zeng, G.; Chen, Z.; Wang, J.; Feng, H.; Peng, B.; Liu, Y.; Zhou, Y. Insight into the dual-channel charge-charrier transfer path for nonmetal plasmonic tungsten oxide based composites with boosted photocatalytic activity under full-spectrum light. Appl. Catal. B Environ. 2018, 235, 225–237. [Google Scholar] [CrossRef]
- Wang, S.X.; Gao, S.S.; Tian, J.Y.; Wang, Q.; Wang, T.Y.; Hao, X.J.; Cui, F.Y. A stable and easily prepared copper oxide catalyst for degradation of organic pollutants by peroxymonosulfate activation. J. Hazard. Mater. 2020, 387, 121995. [Google Scholar] [CrossRef]
- Chi, H.Y.; Wan, J.Q.; Ma, Y.W.; Wang, Y.; Ding, S.; Li, X.T. Ferrous metal-organic frameworks with stronger coordinatively unsaturated metal sites for persulfate activation to effectively degrade dibutyl phthalate in wastewater. J. Hazard. Mater. 2019, 377, 163–171. [Google Scholar] [CrossRef]
- Yang, X.; Xu, Q. Bimetallic Metal–Organic Frameworks for Gas Storage and Separation. Cryst. Growth Des. 2017, 17, 1450–1455. [Google Scholar] [CrossRef]
- Alshorifi, F.T.; Ali, S.L.; Salama, R.S. Promotional Synergistic Effect of Cs–Au NPs on the Performance of Cs–Au/MgFe2O4 Catalysts in Catalysis 3,4-Dihydropyrimidin-2(1H)-Ones and Degradation of RhB Dye. J. Inorg. Organomet. Polym. Mater. 2022, in press. [Google Scholar] [CrossRef]
- Guesh, K.; Caiuby, C.A.D.; Mayoral, Á.; Díaz-García, M.; Díaz, I.; Sanchez-Sanchez, M. Sustainable Preparation of MIL-100(Fe) and Its Photocatalytic Behavior in the Degradation of Methyl Orange in Water. Cryst. Growth Des. 2017, 17, 1806–1813. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Zhu, L.; Wang, N.; Zhang, T.; Tang, H. Selective photocatalytic degradation of nitrobenzene facilitated by molecular imprinting with a transition state analog. Catal. Today 2014, 225, 164–170. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, M.; Li, K.; Zuo, Y.; Han, Y.; Wang, J.; Song, C.; Zhang, G.; Guo, X. Facile synthesis of Fe-containing metal-organic frameworks as highly efficient catalysts for degradation of phenol at neutral pH and ambient temperature. Crystengcomm 2015, 17, 7160–7168. [Google Scholar] [CrossRef]
- Lv, H.; Zhao, H.; Cao, T.; Qian, L.; Wang, Y.; Zhao, G. Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework. J. Mol. Catal. A-Chem. 2015, 400, 81–89. [Google Scholar] [CrossRef]
- Pu, M.; Guan, Z.; Ma, Y.; Wan, J.; Wang, Y.; Brusseau, M.L.; Chi, H. Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution. Appl. Catal. A Gen. 2018, 549, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Chen, Y.; Peng, Q.; Wang, Q.; Zhao, G. Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and OH generation in solar photo–electro–Fenton process. Appl. Catal. B: Environ. 2017, 203, 127–137. [Google Scholar] [CrossRef]
- Li, H.; Yao, Y.; Chen, J.; Wang, C.; Huang, J.; Du, J.; Xu, S.; Tang, J.; Zhao, H.; Huang, M. Heterogeneous activation of peroxymonosulfate by bimetallic MOFs for efficientdegradation of phenanthrene: Synthesis, performance, kinetics, and mechanisms. Sep. Purif. Technol. 2021, 259, 118217. [Google Scholar] [CrossRef]
- Li, H.; Yao, Y.; Zhang, J.; Du, J.; Xu, S.; Wang, C.; Zhang, D.; Tang, J.; Zhao, H.; Zhou, J. Degradation of phenanthrene by peroxymonosulfate activated with bimetallic metal-organic frameworks: Kinetics, mechanisms, and degradation products. Chem. Eng. J. 2020, 397, 125401. [Google Scholar] [CrossRef]
- Liu, Y.; Lan, Q.; Sun, S.; Yang, Q. Synergistic oxygen vacancy-rich CuO/visible light activation of peroxymonosulfate for degradation of rhodamine B: Fast catalyst synthesis and degradation mechanism. RSC Adv. 2022, 12, 2928–2937. [Google Scholar] [CrossRef]
- Li, H.; Wan, J.; Ma, Y.; Huang, M.; Wang, Y.; Chen, Y. New insights into the role of zero-valent iron surface oxidation layers in persulfate oxidation of dibutyl phthalate solutions. Chem. Eng. J. 2014, 250, 137–147. [Google Scholar] [CrossRef]
- Gaikwad, S.; Cheedarala, R.K.; Gaikwad, R.; Kim, S.; Han, S. Controllable Synthesis of 1, 3, 5-tris (1H-benzo[d]imidazole-2-yl) Benzene-Based MOFs. Appl. Sci. 2021, 11, 9856. [Google Scholar] [CrossRef]
- Altass, H.M.; Morad, M.; Khder, A.E.-R.S.; Mannaa, M.A.; Jassas, R.S.; Alsimaree, A.A.; Ahmed, S.A.; Salama, R.S. Enhanced Catalytic Activity for CO Oxidation by Highly Active Pd Nanoparticles Supported on Reduced Graphene Oxide /Copper Metal Organic Framework. J. Taiwan Inst. Chem. Eng. 2021, 128, 194–208. [Google Scholar] [CrossRef]
- Li, H.; Wan, J.; Ma, Y.; Wang, Y.; Chen, X.; Guan, Z. Degradation of refractory dibutyl phthalate by peroxymonosulfate activated with novel catalysts cobalt metal-organic frameworks: Mechanism, performance, and stability. J. Hazard. Mater. 2016, 318, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Zuo, S.; Guan, Z.; Xia, D.; Yang, F.; Xu, H.; Huang, M.; Li, D. Polarized heterogeneous CuO-CN for peroxymonosulfate nonradical activation: An enhancement mechanism of mediated electron transfer. Chem. Eng. J. 2021, 420, 127619. [Google Scholar] [CrossRef]
- Tan, C.Q.; Gao, N.Y.; Fu, D.F.; Deng, J.; Deng, L. Efficient degradation of paracetamol with nanoscaled magnetic CoFe2O4 and MnFe2O4 as a heterogeneous catalyst of peroxymonosulfate. Sep. Purif. Technol. 2017, 175, 47–57. [Google Scholar] [CrossRef]
- Tang, L.; Liu, Y.; Wang, J.; Zeng, G.; Deng, Y.; Dong, H.; Feng, H.; Wang, J.; Peng, B. Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: Electron transfer mechanism. Appl. Catal. B Environ. 2018, 231, 1–10. [Google Scholar] [CrossRef]
- Ahmadi, M.; Ghanbari, F.; Alvarez, A.; Silva Martinez, S. UV-LEDs assisted peroxymonosulfate/Fe2+ for oxidative removal of carmoisine: The effect of chloride ion. Korean J. Chem. Eng. 2017, 34, 2154–2161. [Google Scholar] [CrossRef]
- Babuponnusami, A.; Muthukumar, K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng. 2014, 2, 557–572. [Google Scholar] [CrossRef]
- Liang, C.; Bruell, C.J.; Marley, M.C.; Sperry, K.L. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere 2004, 55, 1213–1223. [Google Scholar] [CrossRef]
- Li, H.; Wan, J.; Ma, Y.; Wang, Y.; Guan, Z. Role of inorganic ions and dissolved natural organic matters on persulfate oxidation of acid orange 7 with zero-valent iron. RSC Adv. 2015, 5, 99935–99943. [Google Scholar] [CrossRef]
- Shen, Z.; Zhou, H.; Pan, Z.; Guo, Y.; Yuan, Y.; Yao, G.; Lai, B. Degradation of atrazine by Bi2MoO6 activated peroxymonosulfate under visible light irradiation. J. Hazard. Mater. 2020, 400, 123187. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Peng, J.; Li, J.; You, J.; Lai, L.; Liu, R.; Ao, Z.; Yao, G.; Lai, B. Metal-free black-red phosphorus as an efficient heterogeneous reductant to boost Fe(3+)/Fe(2+) cycle for peroxymonosulfate activation. Water Res. 2021, 188, 116529. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Bao, Y.; Sheng, T.; Yi, Q.; Zhu, Q.; Shen, B.; Xing, M.; Lo, I.M.C.; Zhang, J. Singlet oxygen triggered by robust bimetallic MoFe/TiO2 nanospheres of highly efficacy in solar-light-driven peroxymonosulfate activation for organic pollutants removal. Appl. Catal. B Environ. 2021, 286, 119930. [Google Scholar] [CrossRef]
- Furma, O.L.D.F.; Blumenfeld, A. Enhanced Reactivity of Superoxide in Water-Solid Matrices. Environ. Sci. Technol. 2009, 43, 1528–1533. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, H.; Ang, H.M.; Tadé, M.O.; Wang, S. 3D-hierarchically structured MnO2 for catalytic oxidation of phenol solutions by activation of peroxymonosulfate: Structure dependence and mechanism. Appl. Catal. 2015, 164, 159–167. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J. MOF-derived Co3O4-C@FeOOH as an efficient catalyst for catalytic ozonation of norfloxacin. J. Hazard. Mater. 2021, 403, 123697. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Chen, H.; Lian, C.; Wei, F.; Zhang, D.; Wu, G.; Chen, B.; Wang, S. Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal. J. Hazard. Mater. 2016, 314, 129–139. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Wang, J. Peroxymonosulfate Activation by Fe-Co-O-Codoped Graphite Carbon Nitride for Degradation of Sulfamethoxazole. Environ. Sci. Technol. 2020, 54, 10361–10369. [Google Scholar] [CrossRef]
MB Concentration | FeCu-MOF Dosage | PMS Concentration | Initial pH (min−1) | kobs (min−1) | R2 |
---|---|---|---|---|---|
0.2 mM | 0.1 g/L | 1.0 mM | Not adjusted | 0.014 | 0.950 |
0.2 mM | 0.1 g/L | 2.0 mM | Not adjusted | 0.025 | 0.953 |
0.2 mM | 0.1 g/L | 3.0 mM | Not adjusted | 0.035 | 0.989 |
0.2 mM | 0.1 g/L | 4.0 mM | Not adjusted | 0.043 | 0.993 |
0.2 mM | 0.1 g/L | 6.0 mM | Not adjusted | 0.099 | 0.981 |
0.2 mM | 0.05 g/L | 2.0 mM | Not adjusted | 0.019 | 0.981 |
0.2 mM | 0.1 g/L | 2.0 mM | Not adjusted | 0.025 | 0.953 |
0.2 mM | 0.2 g/L | 2.0 mM | Not adjusted | 0.032 | 0.969 |
0.2 mM | 0.3 g/L | 2.0 mM | Not adjusted | 0.037 | 0.993 |
0.2 mM | 0.6 g/L | 2.0 mM | Not adjusted | 0.062 | 0.978 |
0.2 mM | 0.1 g/L | 2.0 mM | Not adjusted | 0.025 | 0.953 |
0.4 mM | 0.1 g/L | 2.0 mM | Not adjusted | 0.010 | 0.990 |
0.8 mM | 0.1 g/L | 2.0 mM | Not adjusted | 0.0053 | 0.984 |
1.2 mM | 0.1 g/L | 2.0 mM | Not adjusted | 0.0048 | 0.978 |
0.2 mM | 0.1 g/L | 2.0 mM | 3.16 | 0.0215 | 0.998 |
0.2 mM | 0.1 g/L | 2.0 mM | 5.33 | 0.0193 | 0.978 |
0.2 mM | 0.1 g/L | 2.0 mM | 6.96 | 0.0143 | 0.996 |
0.2 mM | 0.1 g/L | 2.0 mM | 9.05 | 0.0203 | 0.978 |
0.2 mM | 0.1 g/L | 2.0 mM | 10.87 | 0.0086 | 0.986 |
Type of Catalyst | Reaction System | Reaction Conditions | Performance | Reference |
---|---|---|---|---|
MIL-53(Fe) | PDS | OG = 0.2 mM, catalyst = 1.0 g/L, PDS = 32 mM | 120 min, 100% | [25] |
MOF/carbon aerogel | UV = 500 W | RhB = 50 mg/L, catalyst = 3.0 g/L, pH = 3.0 | 45 min, 100% | [24] |
Cu@Co-MOFs | PMS | MB = 0.2 mM, catalyst = 0.1 g/L, PMS = 2 mM | 30 min, 100.0% | [3] |
Cu@Co-MOFs | PDS | MB = 0.2 mM, catalyst = 0.1 g/L, PDS = 2 mM | 30 min, 28.0% | [3] |
MIL-100(Fe) | H2O2 | MB = 0.5 g/L, catalyst = 1.0 g/L, H2O2 = 40 mM, pH = 3.0 | 285 min, 45% | [22] |
FeII@MIL-100(Fe) | H2O2 | MB = 0.5 g/L, catalyst = 1.0 g/L, H2O2 = 40 mM, pH = 3.0 | 285 min, 78% | [22] |
FeCo-BDC | PMS | MB = 0.2 mM, catalyst = 50 mg/L, PMS = 1.0 mM | 15 min, 100% | [25] |
CuCo-MOF-74 | PMS | MB = 0.2 mM, catalyst = 50 mg/L, PMS = 2.0 mM | 30 min, 100.0% | [12] |
FeCu-MOF | PMS | MB = 0.2 mM, catalyst = 0.6 g/L, PMS = 6.0 mM | 30 min, 100% | This study |
Element | Binding Energy before Reaction (eV) | Binding Energy after Reaction (eV) |
---|---|---|
O1s | 531.1 C-O | 531.3 C-O |
532.1 C=O | 532.7 C=O | |
284.3 C=C | 284.4 C=C | |
C1s | 285.9 C-C/C-H | 285.9 C-C/C-H |
288.1 C=O-OH | 288.0 C=O-OH | |
709.5 Fe (II) | 710.3 Fe (II) | |
Fe 2p | 711.1 Fe (III) | 711.8 Fe (III) |
714.2 Fe (II) | 714.9 Fe (II) | |
Cu 2p | 932.7 Cu (I) | 932.5 Cu (I) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Xu, C.; Li, N.; Rao, T.; Zhou, Z.; Zhou, Q.; Wang, C.; Xu, S.; Tang, J. Synthesis of Bimetallic FeCu-MOF and Its Performance as Catalyst of Peroxymonosulfate for Degradation of Methylene Blue. Materials 2022, 15, 7252. https://doi.org/10.3390/ma15207252
Li H, Xu C, Li N, Rao T, Zhou Z, Zhou Q, Wang C, Xu S, Tang J. Synthesis of Bimetallic FeCu-MOF and Its Performance as Catalyst of Peroxymonosulfate for Degradation of Methylene Blue. Materials. 2022; 15(20):7252. https://doi.org/10.3390/ma15207252
Chicago/Turabian StyleLi, Huanxuan, Chen Xu, Ning Li, Tao Rao, Zhong Zhou, Qingwei Zhou, Chunhui Wang, Shaodan Xu, and Junhong Tang. 2022. "Synthesis of Bimetallic FeCu-MOF and Its Performance as Catalyst of Peroxymonosulfate for Degradation of Methylene Blue" Materials 15, no. 20: 7252. https://doi.org/10.3390/ma15207252
APA StyleLi, H., Xu, C., Li, N., Rao, T., Zhou, Z., Zhou, Q., Wang, C., Xu, S., & Tang, J. (2022). Synthesis of Bimetallic FeCu-MOF and Its Performance as Catalyst of Peroxymonosulfate for Degradation of Methylene Blue. Materials, 15(20), 7252. https://doi.org/10.3390/ma15207252