Magnetic-Property Assessment on Dy–Nd–Fe–B Permanent Magnet by Thermodynamic Calculation and Micromagnetic Simulation
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gutfleisch, O.; Willard, M.A.; Brück, E.; Chen, C.H.; Sankar, S.G.; Liu, J.P. Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 2011, 23, 821. [Google Scholar] [CrossRef] [PubMed]
- Coey, J.M.D. Perspective and prospects for rare earth permanent magnets. Engineering 2020, 6, 119–131. [Google Scholar] [CrossRef]
- Liu, J.; Sepehri-Amin, H.; Ohkubo, T.; Hioki, K.; Hattori, A.; Schrefl, T.; Hono, K. Effect of Nd content on the microstructure and coercivity of hot-deformed Nd–Fe–B permanent magnets. Acta Mater. 2013, 61, 5387–5399. [Google Scholar] [CrossRef]
- Sarriegui, G.; Martin, J.M.; Burgos, N.; Ipatov, M.; Zhukov, A.P.; Gonzalez, J. Effect of particle size on grain growth of Nd-Fe-B powders produced by gas atomization. Mater. Characterization 2022, 187, 111824. [Google Scholar] [CrossRef]
- Loewe, K.; Brombacher, C.; Katter, M.; Gutfleisch, O. Temperature-dependent Dy diffusion processes in Nd-Fe-B permanent magnets. Acta Mater. 2015, 83, 248–255. [Google Scholar] [CrossRef]
- Helbig, T.; Loewe, K.; Sawatzki, S.; Yi, M.; Xu, B.X.; Gutfleisch, O. Experimental and computational analysis of magnetization reversal in (Nd,Dy)-Fe-B core shell sintered magnets. Acta Mater. 2017, 127, 498–504. [Google Scholar] [CrossRef]
- Hono, K.; Sepehri-Amin, H. Strategy for high-coercivity Nd–Fe–B magnets. Scr. Mater. 2012, 67, 530–535. [Google Scholar] [CrossRef]
- Nothnagel, P.; Müller, K.-H.; Eckert, D.; Handstein, A. The influence of particle size on the coercivity of sintered NdFeB magnets. J. Magn. Magn. Mater. 1991, 101, 379–381. [Google Scholar] [CrossRef]
- Yi, M.; Gutfleisch, O.; Xu, B.-X. Micromagnetic simulations on the grain shape effect in Nd-Fe-B magnets. J. Appl. Phys. 2016, 120, 033903. [Google Scholar] [CrossRef]
- Gong, Q.H.; Yi, M.; Xu, B.X. Multiscale simulations toward calculating coercivity of Nd-Fe-B permanent magnets at high temperatures. Phys. Rev. Mater. 2019, 3, 084406. [Google Scholar] [CrossRef]
- Turky, A.O.; Rashad, M.M.; Hassan, A.M.; Elnaggar, E.M.; Bechelany, M. Tailoring optical, magnetic and electric behavior of lanthanum strontium manganite La1−xSrxMnO3 (LSM) nanopowders prepared via a co-precipitation method with different Sr2+ ion contents. RSC Adv. 2016, 6, 17980–17986. [Google Scholar] [CrossRef]
- Turky, A.O.; Rashad, M.M.; Hassan, A.M.; Elnaggar, E.M.; Bechelany, M. Optical, electrical and magnetic properties of lanthanum strontium manganite La1−xSrxMnO3 synthesized through the citrate combustion method. Phys. Chem. Chem. Phys. 2017, 19, 6878–6886. [Google Scholar] [CrossRef] [PubMed]
- Turkey, A.O.; Abdelmoaz, M.A.; Hessien, M.M.; Hassan, A.M.; Bechelany, M.; Ewais, E.M.; Rashad, M.M. A robust and highly precise alternative against the proliferation of intestinal carcinoma and human hepatocellular carcinoma cells based on lanthanum strontium manganite nanoparticles. Materials 2021, 14, 4979. [Google Scholar] [CrossRef] [PubMed]
- Sepehri-Amin, H.; Ohkubo, T.; Hono, K. The mechanism of coercivity enhancement by the grain boundary diffusion process of Nd-Fe-B sintered magnets. Acta Mater. 2013, 61, 1982–1990. [Google Scholar] [CrossRef]
- Opelt, K.; Ahmad, T.; Diehl, O.; Schonfeldt, M.; Brouwer, E.; Vogel, I.; Rossa, J.D.; Gassmann, J.; Ener, S.; Gutfleisch, O. Upscaling the 2-powder method for the manufacturing of heavy rare-earth-lean sintered didymium-based magnets. Adv. Eng. Mater. 2021, 23, 2100459. [Google Scholar] [CrossRef]
- Dai, Z.M.; Liu, W.; Zhao, X.T.; Han, Z.; Kim, D.; Choi, C.J.; Zhang, Z.D. Magnetic interactions in anisotropic Nd-Dy-Fe-Co-B/α−Fe multilayer magnets. J. Appl. Phys. 2016, 120, 163906. [Google Scholar] [CrossRef]
- Sepehri-Amin, H.; Hirosawa, S.; Hono, K. Advances in Nd-Fe-B Based Permanent Magnets. Handb. Magn. Mater. 2018, 27, 269–372. [Google Scholar]
- Gutfleisch, O. Controlling the properties of high energy density permanent magnetic materials by different processing routes. J. Phys. D Appl. Phys. 2000, 33, R157–R172. [Google Scholar] [CrossRef]
- Nakazawa, R.; Noguchi, K.; Kobayashi, Y. Thermodynamic property of oxygen in Nd-Dy-O system for reduction of Dy consumption in Nd-Fe-B magnets. Mater. Trans. 2022, 63, 190–196. [Google Scholar] [CrossRef]
- Abe, T.; Morishita, M.; Chen, Y.; Saengdeejing, A.; Hashimoto, K.; Kobayashi, Y.; Ohnuma, L.; Koyama, T.; Hirosawa, S. Development of a prototype thermodynamic database for Nd-Fe-B permanent magnets. Sci. Technol. Adv. Mater. 2021, 22, 557–570. [Google Scholar] [CrossRef]
- Grieb, B.; Schneider, G.; Henig, E.T.; Petzow, G. Structural investigations and constitution along Fe14(Nd1−x(Tb or Dy)x)2B. Int. J. Mater. Res. 1989, 80, 515–519. [Google Scholar] [CrossRef]
- Kobzenko, G.F.; Svechnikov, V.N.; Matrynchuk, E.L. Phase diagram of the system neodymium-dysprosium. Inst. Met. Phys. Kiev 1972, 6, 563–565. [Google Scholar]
- Nam, S.W.; Park, S.M.; Kim, D.H.; Kim, T.S. Thermodynamic calculations and parameter variations for improving the extraction efficiency of Dy in ternary alloy system. Met. Mater. Int. 2021, 27, 538–544. [Google Scholar] [CrossRef]
- Van Ende, M.A.; Jung, I.H.; Kim, Y.H.; Kim, T.S. Thermodynamic optimization of the Dy–Nd–Fe–B system and application in the recovery and recycling of rare earth metals from NdFeB magnet. Green Chem. 2015, 17, 2246–2262. [Google Scholar] [CrossRef]
- Redlich, O.; Kister, A.T. Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 1948, 40, 345–348. [Google Scholar] [CrossRef]
- Dinsdale, A. SGTE data for pure elements. Calphad 1991, 15, 317–327. [Google Scholar] [CrossRef]
- Hillert, M.; Jarl, M. A model for alloying in ferromagnetic metals. Calphad 1978, 2, 227–238. [Google Scholar] [CrossRef]
- Kopp, H. Investigations of the specific heat of solid bodies. Philos. Trans. R. Soc. Lond. 1865, 155, 71. [Google Scholar] [CrossRef]
- Chen, T.L.; Wang, J.; Guo, C.P.; Li, C.R.; Du, Z.M.; Rao, G.H.; Zhou, H.Y. Thermodynamic description of the Nd-Fe-B ternary system. Calphad 2019, 66, 101627. [Google Scholar] [CrossRef]
- Li, S.; Rong, M.H.; Xu, L.; Wei, Q.; Wang, J.; Rao, G.H.; Zhou, H.Y. Thermodynamic assessment of the RE-B (RE = Ce, Dy, Lu) binary systems. Calphad 2020, 68, 101740. [Google Scholar] [CrossRef]
- Hallemans, B.; Wollants, P.; Roos, J.R.; Metallkd, Z. Thermodynamic reassessment and calculation of the Fe-B phase diagram. Int. J. Mater. Res. 1994, 85, 676–682. [Google Scholar] [CrossRef]
- Rong, M.H.; Chen, X.L.; Wang, J.; Rao, G.H.; Zhou, H.Y. Thermodynamic re-assessment of the Fe-Dy and Fe-Tb binary systems. Calphad 2017, 59, 154–163. [Google Scholar] [CrossRef]
- Chen, T.L.; Wang, J.; Rong, M.H.; Rao, G.H.; Zhou, H.Y. Experimental investigation and thermodynamic assessment of the Fe-Pr and Fe-Nd binary systems. Calphad 2016, 55, 270–280. [Google Scholar] [CrossRef]
- Zhou, G.J.; Luo, Y.; Zhou, Y. Thermodynamic reassessment of the Nd-Fe-B ternary system. J. Electron. Mater. 2016, 45, 418–425. [Google Scholar] [CrossRef]
- OpenCALPHAD. Available online: https://www.opencalphad.com/ (accessed on 1 January 2022).
- McMichael, R.; Donahue, M. OOMMF Software Package. Available online: http://math.nist.gov/oommf/ (accessed on 1 June 2019).
- Yu, H.M.; Xiao, J.; Schultheiss, H. Magnetic texture based magnonics. Phys. Rep. 2021, 905, 1–59. [Google Scholar] [CrossRef]
- Fischbacher, J.; Kovacs, A.; Gusenbauer, M.; Oezelt, H.; Exl, L.; Bance, S.; Schrefl, T. Micromagnetics of rare-earth efficient permanent magnets. J. Phys. D Appl. Phys. 2018, 51, 193002. [Google Scholar] [CrossRef]
- Sasaki, T.T.; Ohkubo, T.; Hono, K. Structure and chemical compositions of the grain boundary phase in Nd-Fe-B sintered magnets. Acta Mater. 2016, 115, 269–277. [Google Scholar] [CrossRef]
- Sepehri-Amin, H.; Ohkubo, T.; Hono, K. Grain boundary structure and chemistry of Dy-diffusion processed Nd–Fe–B sintered magnets. J. Appl. Phys. 2010, 107, 09A745. [Google Scholar] [CrossRef]
- Lewis, L.H.; Jimenez-Villacorta, F. Perspectives on permanent magnetic materials for energy conversion and power generation. Metall. Mater. Trans. A 2013, 44, 2–20. [Google Scholar] [CrossRef]
Phases | Thermodynamic Parameters |
---|---|
Liquid | |
BCC | |
HCP | |
DyNd | |
Dy2Fe14B | |
Dy1.1Fe4B4 |
Component | A/pJ/m | K1/MJ/m3 | μ0Ms/T |
---|---|---|---|
Nd2Fe14B | 7.7 | 4.5 | 1.6 |
Dy2Fe14B | 6.3 | 4.0 | 0.71 |
Nd-rich | 4 | 0 | 0 |
α-Fe | 25 | 0.046 | 2.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Z.; Li, K.; Wang, Z.; Liu, W.; Zhang, Z. Magnetic-Property Assessment on Dy–Nd–Fe–B Permanent Magnet by Thermodynamic Calculation and Micromagnetic Simulation. Materials 2022, 15, 7648. https://doi.org/10.3390/ma15217648
Dai Z, Li K, Wang Z, Liu W, Zhang Z. Magnetic-Property Assessment on Dy–Nd–Fe–B Permanent Magnet by Thermodynamic Calculation and Micromagnetic Simulation. Materials. 2022; 15(21):7648. https://doi.org/10.3390/ma15217648
Chicago/Turabian StyleDai, Zhiming, Kai Li, Zhenhua Wang, Wei Liu, and Zhidong Zhang. 2022. "Magnetic-Property Assessment on Dy–Nd–Fe–B Permanent Magnet by Thermodynamic Calculation and Micromagnetic Simulation" Materials 15, no. 21: 7648. https://doi.org/10.3390/ma15217648
APA StyleDai, Z., Li, K., Wang, Z., Liu, W., & Zhang, Z. (2022). Magnetic-Property Assessment on Dy–Nd–Fe–B Permanent Magnet by Thermodynamic Calculation and Micromagnetic Simulation. Materials, 15(21), 7648. https://doi.org/10.3390/ma15217648