Magnetic-Property Assessment on Dy–Nd–Fe–B Permanent Magnet by Thermodynamic Calculation and Micromagnetic Simulation
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gutfleisch, O.; Willard, M.A.; Brück, E.; Chen, C.H.; Sankar, S.G.; Liu, J.P. Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 2011, 23, 821. [Google Scholar] [CrossRef] [PubMed]
- Coey, J.M.D. Perspective and prospects for rare earth permanent magnets. Engineering 2020, 6, 119–131. [Google Scholar] [CrossRef]
- Liu, J.; Sepehri-Amin, H.; Ohkubo, T.; Hioki, K.; Hattori, A.; Schrefl, T.; Hono, K. Effect of Nd content on the microstructure and coercivity of hot-deformed Nd–Fe–B permanent magnets. Acta Mater. 2013, 61, 5387–5399. [Google Scholar] [CrossRef]
- Sarriegui, G.; Martin, J.M.; Burgos, N.; Ipatov, M.; Zhukov, A.P.; Gonzalez, J. Effect of particle size on grain growth of Nd-Fe-B powders produced by gas atomization. Mater. Characterization 2022, 187, 111824. [Google Scholar] [CrossRef]
- Loewe, K.; Brombacher, C.; Katter, M.; Gutfleisch, O. Temperature-dependent Dy diffusion processes in Nd-Fe-B permanent magnets. Acta Mater. 2015, 83, 248–255. [Google Scholar] [CrossRef]
- Helbig, T.; Loewe, K.; Sawatzki, S.; Yi, M.; Xu, B.X.; Gutfleisch, O. Experimental and computational analysis of magnetization reversal in (Nd,Dy)-Fe-B core shell sintered magnets. Acta Mater. 2017, 127, 498–504. [Google Scholar] [CrossRef]
- Hono, K.; Sepehri-Amin, H. Strategy for high-coercivity Nd–Fe–B magnets. Scr. Mater. 2012, 67, 530–535. [Google Scholar] [CrossRef]
- Nothnagel, P.; Müller, K.-H.; Eckert, D.; Handstein, A. The influence of particle size on the coercivity of sintered NdFeB magnets. J. Magn. Magn. Mater. 1991, 101, 379–381. [Google Scholar] [CrossRef]
- Yi, M.; Gutfleisch, O.; Xu, B.-X. Micromagnetic simulations on the grain shape effect in Nd-Fe-B magnets. J. Appl. Phys. 2016, 120, 033903. [Google Scholar] [CrossRef] [Green Version]
- Gong, Q.H.; Yi, M.; Xu, B.X. Multiscale simulations toward calculating coercivity of Nd-Fe-B permanent magnets at high temperatures. Phys. Rev. Mater. 2019, 3, 084406. [Google Scholar] [CrossRef]
- Turky, A.O.; Rashad, M.M.; Hassan, A.M.; Elnaggar, E.M.; Bechelany, M. Tailoring optical, magnetic and electric behavior of lanthanum strontium manganite La1−xSrxMnO3 (LSM) nanopowders prepared via a co-precipitation method with different Sr2+ ion contents. RSC Adv. 2016, 6, 17980–17986. [Google Scholar] [CrossRef]
- Turky, A.O.; Rashad, M.M.; Hassan, A.M.; Elnaggar, E.M.; Bechelany, M. Optical, electrical and magnetic properties of lanthanum strontium manganite La1−xSrxMnO3 synthesized through the citrate combustion method. Phys. Chem. Chem. Phys. 2017, 19, 6878–6886. [Google Scholar] [CrossRef] [PubMed]
- Turkey, A.O.; Abdelmoaz, M.A.; Hessien, M.M.; Hassan, A.M.; Bechelany, M.; Ewais, E.M.; Rashad, M.M. A robust and highly precise alternative against the proliferation of intestinal carcinoma and human hepatocellular carcinoma cells based on lanthanum strontium manganite nanoparticles. Materials 2021, 14, 4979. [Google Scholar] [CrossRef] [PubMed]
- Sepehri-Amin, H.; Ohkubo, T.; Hono, K. The mechanism of coercivity enhancement by the grain boundary diffusion process of Nd-Fe-B sintered magnets. Acta Mater. 2013, 61, 1982–1990. [Google Scholar] [CrossRef]
- Opelt, K.; Ahmad, T.; Diehl, O.; Schonfeldt, M.; Brouwer, E.; Vogel, I.; Rossa, J.D.; Gassmann, J.; Ener, S.; Gutfleisch, O. Upscaling the 2-powder method for the manufacturing of heavy rare-earth-lean sintered didymium-based magnets. Adv. Eng. Mater. 2021, 23, 2100459. [Google Scholar] [CrossRef]
- Dai, Z.M.; Liu, W.; Zhao, X.T.; Han, Z.; Kim, D.; Choi, C.J.; Zhang, Z.D. Magnetic interactions in anisotropic Nd-Dy-Fe-Co-B/α−Fe multilayer magnets. J. Appl. Phys. 2016, 120, 163906. [Google Scholar] [CrossRef]
- Sepehri-Amin, H.; Hirosawa, S.; Hono, K. Advances in Nd-Fe-B Based Permanent Magnets. Handb. Magn. Mater. 2018, 27, 269–372. [Google Scholar]
- Gutfleisch, O. Controlling the properties of high energy density permanent magnetic materials by different processing routes. J. Phys. D Appl. Phys. 2000, 33, R157–R172. [Google Scholar] [CrossRef]
- Nakazawa, R.; Noguchi, K.; Kobayashi, Y. Thermodynamic property of oxygen in Nd-Dy-O system for reduction of Dy consumption in Nd-Fe-B magnets. Mater. Trans. 2022, 63, 190–196. [Google Scholar] [CrossRef]
- Abe, T.; Morishita, M.; Chen, Y.; Saengdeejing, A.; Hashimoto, K.; Kobayashi, Y.; Ohnuma, L.; Koyama, T.; Hirosawa, S. Development of a prototype thermodynamic database for Nd-Fe-B permanent magnets. Sci. Technol. Adv. Mater. 2021, 22, 557–570. [Google Scholar] [CrossRef]
- Grieb, B.; Schneider, G.; Henig, E.T.; Petzow, G. Structural investigations and constitution along Fe14(Nd1−x(Tb or Dy)x)2B. Int. J. Mater. Res. 1989, 80, 515–519. [Google Scholar] [CrossRef]
- Kobzenko, G.F.; Svechnikov, V.N.; Matrynchuk, E.L. Phase diagram of the system neodymium-dysprosium. Inst. Met. Phys. Kiev 1972, 6, 563–565. [Google Scholar]
- Nam, S.W.; Park, S.M.; Kim, D.H.; Kim, T.S. Thermodynamic calculations and parameter variations for improving the extraction efficiency of Dy in ternary alloy system. Met. Mater. Int. 2021, 27, 538–544. [Google Scholar] [CrossRef]
- Van Ende, M.A.; Jung, I.H.; Kim, Y.H.; Kim, T.S. Thermodynamic optimization of the Dy–Nd–Fe–B system and application in the recovery and recycling of rare earth metals from NdFeB magnet. Green Chem. 2015, 17, 2246–2262. [Google Scholar] [CrossRef]
- Redlich, O.; Kister, A.T. Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 1948, 40, 345–348. [Google Scholar] [CrossRef]
- Dinsdale, A. SGTE data for pure elements. Calphad 1991, 15, 317–327. [Google Scholar] [CrossRef]
- Hillert, M.; Jarl, M. A model for alloying in ferromagnetic metals. Calphad 1978, 2, 227–238. [Google Scholar] [CrossRef]
- Kopp, H. Investigations of the specific heat of solid bodies. Philos. Trans. R. Soc. Lond. 1865, 155, 71. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.L.; Wang, J.; Guo, C.P.; Li, C.R.; Du, Z.M.; Rao, G.H.; Zhou, H.Y. Thermodynamic description of the Nd-Fe-B ternary system. Calphad 2019, 66, 101627. [Google Scholar] [CrossRef]
- Li, S.; Rong, M.H.; Xu, L.; Wei, Q.; Wang, J.; Rao, G.H.; Zhou, H.Y. Thermodynamic assessment of the RE-B (RE = Ce, Dy, Lu) binary systems. Calphad 2020, 68, 101740. [Google Scholar] [CrossRef]
- Hallemans, B.; Wollants, P.; Roos, J.R.; Metallkd, Z. Thermodynamic reassessment and calculation of the Fe-B phase diagram. Int. J. Mater. Res. 1994, 85, 676–682. [Google Scholar] [CrossRef]
- Rong, M.H.; Chen, X.L.; Wang, J.; Rao, G.H.; Zhou, H.Y. Thermodynamic re-assessment of the Fe-Dy and Fe-Tb binary systems. Calphad 2017, 59, 154–163. [Google Scholar] [CrossRef]
- Chen, T.L.; Wang, J.; Rong, M.H.; Rao, G.H.; Zhou, H.Y. Experimental investigation and thermodynamic assessment of the Fe-Pr and Fe-Nd binary systems. Calphad 2016, 55, 270–280. [Google Scholar] [CrossRef]
- Zhou, G.J.; Luo, Y.; Zhou, Y. Thermodynamic reassessment of the Nd-Fe-B ternary system. J. Electron. Mater. 2016, 45, 418–425. [Google Scholar] [CrossRef]
- OpenCALPHAD. Available online: https://www.opencalphad.com/ (accessed on 1 January 2022).
- McMichael, R.; Donahue, M. OOMMF Software Package. Available online: http://math.nist.gov/oommf/ (accessed on 1 June 2019).
- Yu, H.M.; Xiao, J.; Schultheiss, H. Magnetic texture based magnonics. Phys. Rep. 2021, 905, 1–59. [Google Scholar] [CrossRef]
- Fischbacher, J.; Kovacs, A.; Gusenbauer, M.; Oezelt, H.; Exl, L.; Bance, S.; Schrefl, T. Micromagnetics of rare-earth efficient permanent magnets. J. Phys. D Appl. Phys. 2018, 51, 193002. [Google Scholar] [CrossRef]
- Sasaki, T.T.; Ohkubo, T.; Hono, K. Structure and chemical compositions of the grain boundary phase in Nd-Fe-B sintered magnets. Acta Mater. 2016, 115, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Sepehri-Amin, H.; Ohkubo, T.; Hono, K. Grain boundary structure and chemistry of Dy-diffusion processed Nd–Fe–B sintered magnets. J. Appl. Phys. 2010, 107, 09A745. [Google Scholar] [CrossRef]
- Lewis, L.H.; Jimenez-Villacorta, F. Perspectives on permanent magnetic materials for energy conversion and power generation. Metall. Mater. Trans. A 2013, 44, 2–20. [Google Scholar] [CrossRef]
Phases | Thermodynamic Parameters |
---|---|
Liquid | |
BCC | |
HCP | |
DyNd | |
Dy2Fe14B | |
Dy1.1Fe4B4 |
Component | A/pJ/m | K1/MJ/m3 | μ0Ms/T |
---|---|---|---|
Nd2Fe14B | 7.7 | 4.5 | 1.6 |
Dy2Fe14B | 6.3 | 4.0 | 0.71 |
Nd-rich | 4 | 0 | 0 |
α-Fe | 25 | 0.046 | 2.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Z.; Li, K.; Wang, Z.; Liu, W.; Zhang, Z. Magnetic-Property Assessment on Dy–Nd–Fe–B Permanent Magnet by Thermodynamic Calculation and Micromagnetic Simulation. Materials 2022, 15, 7648. https://doi.org/10.3390/ma15217648
Dai Z, Li K, Wang Z, Liu W, Zhang Z. Magnetic-Property Assessment on Dy–Nd–Fe–B Permanent Magnet by Thermodynamic Calculation and Micromagnetic Simulation. Materials. 2022; 15(21):7648. https://doi.org/10.3390/ma15217648
Chicago/Turabian StyleDai, Zhiming, Kai Li, Zhenhua Wang, Wei Liu, and Zhidong Zhang. 2022. "Magnetic-Property Assessment on Dy–Nd–Fe–B Permanent Magnet by Thermodynamic Calculation and Micromagnetic Simulation" Materials 15, no. 21: 7648. https://doi.org/10.3390/ma15217648
APA StyleDai, Z., Li, K., Wang, Z., Liu, W., & Zhang, Z. (2022). Magnetic-Property Assessment on Dy–Nd–Fe–B Permanent Magnet by Thermodynamic Calculation and Micromagnetic Simulation. Materials, 15(21), 7648. https://doi.org/10.3390/ma15217648