Aerogel Composites Produced from Silica and Recycled Rubber Sols for Thermal Insulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Composite Synthesis
2.3. Materials and Aerogels Characterization
3. Results and Discussion
3.1. Rubber Dissolution
3.2. Structural and Thermal Characterization of the Composites
3.3. Mechanical Characterization of the Composites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References and Note
- Grammelis, P.; Margaritis, N.; Dallas, P.; Rakopoulos, D.; Mavrias, G. A Review on Management of End of Life Tires (ELTs) and Alternative Uses of Textile Fibers. Energies 2021, 14, 571. [Google Scholar] [CrossRef]
- Goldstein Market Intelligence. Global Tire Recycling Industry Analysis by Rubber Type, By Product Type, By End User and by Geography & COVID-19 Impact with Market Outlook 2017–2030. 2020. Available online: https://www.goldsteinresearch.com/ (accessed on 2 September 2022).
- Waste Framework Directive. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. Off. J. Eur. Union 2008, L312, 3–30. [Google Scholar]
- Gharfalkar, M.; Court, R.; Campbell, C.; Ali, Z.; Hillier, G. Analysis of Waste Hierarchy in the European Waste Directive 2008/98/EC. Waste Manag. 2015, 39, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, B.; Fernández, A.M.; Barriocanal, C. Identification of Polymers in Waste Tyre Reinforcing Fibre by Thermal Analysis and Pyrolysis. J. Anal. Appl. Pyrolysis 2015, 111, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Sienkiewicz, M.; Janik, H.; Borzędowska-Labuda, K.; Kucińska-Lipka, J. Environmentally Friendly Polymer-Rubber Composites Obtained from Waste Tyres: A Review. J. Clean. Prod. 2017, 147, 560–571. [Google Scholar] [CrossRef]
- Thai, Q.B.; Siang, T.E.; Le, D.K.; Shah, W.A.; Phan-Thien, N.; Duong, H.M. Advanced Fabrication and Multi-Properties of Rubber Aerogels from Car Tire Waste. Colloids Surf. A Physicochem. Eng. Asp. 2019, 577, 702–708. [Google Scholar] [CrossRef]
- Dwivedi, C.; Manjare, S.; Rajan, S.K. Recycling of Waste Tire by Pyrolysis to Recover Carbon Black: Alternative & Environment-Friendly Reinforcing Filler for Natural Rubber Compounds. Compos. Part B Eng. 2020, 200, 108346. [Google Scholar]
- Passaponti, M.; Rosi, L.; Savastano, M.; Giurlani, W.; Miller, H.A.; Lavacchi, A.; Filippi, J.; Zangari, G.; Vizza, F.; Innocenti, M. Recycling of Waste Automobile Tires: Transforming Char in Oxygen Reduction Reaction Catalysts for Alkaline Fuel Cells. J. Power Sources 2019, 427, 85–90. [Google Scholar] [CrossRef]
- Wang, C.; Li, D.; Zhai, T.; Wang, H.; Sun, Q.; Li, H. Direct Conversion of Waste Tires into Three-Dimensional Graphene. Energy Storage Mater. 2019, 23, 499–507. [Google Scholar] [CrossRef]
- Ochoa, M.L.B.; Durães, L.M.R.; Perdigoto, M.L.-S.N.; Portugal, A.A.T.G. Method for Production of Flexible Panels of Hydrophobic Aerogel Reinforced with Fibre Felts. WO Patent 2015/016730A2, 5 February 2015. [Google Scholar]
- Venkateswara Rao, A.; Haranath, D. Effect of Methyltrimethoxysilane as a Synthesis Component on the Hydrophobicity and Some Physical Properties of Silica Aerogels. Microporous Mesoporous Mater. 1999, 30, 267–273. [Google Scholar] [CrossRef]
- NETZSCH. Heat Flow Meter–HFM 436 Lambda–High Precision Instrument for Testing Insulating Materials–Compliant to ASTM C518, ISO 8301, JIS A1412 and DIN EN 1266.
- ISO 9052-1; Acoustics-Determination of Dynamic Stiffness. Part 1: Materials Used Under Floating Floors In Dwellings. ISO: Geneva, Switzerland, 1989.
- Rao, A.P.; Rao, A.V. Improvement in Optical Transmission of the Ambient Pressure Dried Hydrophobic Nanostructured Silica Aerogels with Mixed Silylating Agents. J. Non. Cryst. Solids 2009, 355, 2260–2271. [Google Scholar] [CrossRef]
- Jaxel, J.; Markevicius, G.; Rigacci, A.; Budtova, T. Thermal Superinsulating Silica Aerogels Reinforced with Short Man-Made Cellulose Fibers. Compos. Part A Appl. Sci. Manuf. 2017, 103, 113–121. [Google Scholar] [CrossRef]
- Torres, R.B.; Vareda, J.P.; Lamy-Mendes, A.; Durães, L. Effect of Different Silylation Agents on the Properties of Ambient Pressure Dried and Supercritically Dried Vinyl-Modified Silica Aerogels. J. Supercrit. Fluids 2019, 147, 81–89. [Google Scholar] [CrossRef]
- Parvathy Rao, A.; Venkateswara Rao, A. Modifying the Surface Energy and Hydrophobicity of the Low-Density Silica Aerogels through the Use of Combinations of Surface-Modification Agents. J. Mater. Sci. 2010, 45, 51–63. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, X.; He, S.; Shi, X.; Gong, L.; Zhang, H. Aramid Fibers Reinforced Silica Aerogel Composites with Low Thermal Conductivity and Improved Mechanical Performance. Compos. Part A Appl. Sci. Manuf. 2016, 84, 316–325. [Google Scholar] [CrossRef]
- Liao, Y.; Wu, H.; Ding, Y.; Yin, S.; Wang, M.; Cao, A. Engineering Thermal and Mechanical Properties of Flexible Fiber-Reinforced Aerogel Composites. J. Sol-Gel Sci. Technol. 2012, 63, 445–456. [Google Scholar] [CrossRef]
- Li, J.; Lei, Y.; Xu, D.; Liu, F.; Li, J.; Sun, A.; Guo, J.; Xu, G. Improved Mechanical and Thermal Insulation Properties of Monolithic Attapulgite Nanofiber/Silica Aerogel Composites Dried at Ambient Pressure. J. Sol-Gel Sci. Technol. 2017, 82, 702–711. [Google Scholar] [CrossRef]
- Hung, W.-C.; Horng, R.S.; Shia, R.-E. Investigation of Thermal Insulation Performance of Glass/Carbon Fiber-Reinforced Silica Aerogel Composites. J. Sol-Gel Sci. Technol. 2020, 97, 414–421. [Google Scholar] [CrossRef]
- Groult, S.; Budtova, T. Thermal Conductivity/Structure Correlations in Thermal Super-Insulating Pectin Aerogels. Carbohydr. Polym. 2018, 196, 73–81. [Google Scholar] [CrossRef]
- Lamy-Mendes, A.; Malfait, W.J.; Sadeghpour, A.; Girão, A.V.; Silva, R.F.; Durães, L. Influence of 1D and 2D Carbon Nanostructures in Silica-Based Aerogels. Carbon N. Y. 2021, 180, 146–162. [Google Scholar] [CrossRef]
- Koebel, M.; Rigacci, A.; Achard, P. Aerogel-Based Thermal Superinsulation: An Overview. J. Sol-Gel Sci. Technol. 2012, 63, 315–339. [Google Scholar] [CrossRef] [Green Version]
- Araujo-Morera, J.; Verdejo, R.; López-Manchado, M.A.; Hernández Santana, M. Sustainable Mobility: The Route of Tires through the Circular Economy Model. Waste Manag. 2021, 126, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Aditya, L.; Mahlia, T.M.I.; Rismanchi, B.; Ng, H.M.; Hasan, M.H.; Metselaar, H.S.C.; Muraza, O.; Aditiya, H.B. A Review on Insulation Materials for Energy Conservation in Buildings. Renew. Sustain. Energy Rev. 2017, 73, 1352–1365. [Google Scholar] [CrossRef]
- Aegerter, M.A.; Leventis, N.; Koebel, M.M. Aerogels Handbook; Springer: New York, NY, USA, 2011. [Google Scholar]
- Wong, J.C.H.; Kaymak, H.; Brunner, S.; Koebel, M.M. Mechanical Properties of Monolithic Silica Aerogels Made from Polyethoxydisiloxanes. Microporous Mesoporous Mater. 2014, 183, 23–29. [Google Scholar] [CrossRef]
- Lu, X.; Caps, R.; Fricke, J.; Alviso, C.T.; Pekala, R.W. Correlation between Structure and Thermal Conductivity of Organic Aerogels. J. Non. Cryst. Solids 1995, 188, 226–234. [Google Scholar] [CrossRef]
- Hüsing, N.; Schubert, U. Aerogels–Airy Materials: Chemistry, Structure, and Properties. Angew. Chem. Int. Ed. 1998, 37, 22–45. [Google Scholar] [CrossRef]
- Zou, F.; Budtova, T. Polysaccharide-Based Aerogels for Thermal Insulation and Superinsulation: An Overview. Carbohydr. Polym. 2021, 266, 118130. [Google Scholar] [CrossRef]
- Ochoa, M.; Durães, L.; Beja, A.M.; Portugal, A. Study of the Suitability of Silica Based Xerogels Synthesized Using Ethyltrimethoxysilane and/or Methyltrimethoxysilane Precursors for Aerospace Applications. J. Sol-Gel Sci. Technol. 2012, 61, 151–160. [Google Scholar] [CrossRef]
- Durães, L.; Ochoa, M.; Rocha, N.; Patrício, R.; Duarte, N.; Redondo, V.; Portugal, A. Effect of the Drying Conditions on the Microstructure of Silica Based Xerogels and Aerogels. J. Nanosci. Nanotechnol. 2012, 12, 6828–6834. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Cheng, X.; He, S.; Shi, X.; Yang, H. Characteristics of Ambient-Pressure-Dried Aerogels Synthesized via Different Surface Modification Methods. J. Sol-Gel Sci. Technol. 2015, 76, 138–149. [Google Scholar] [CrossRef]
- Yang, X.; Sun, Y.; Shi, D.; Liu, J. Experimental Investigation on Mechanical Properties of a Fiber-Reinforced Silica Aerogel Composite. Mater. Sci. Eng. A 2011, 528, 4830–4836. [Google Scholar] [CrossRef]
Property | Composite with: | |||
---|---|---|---|---|
Recycled Tire Textile Fibers | Polyester Fiber Blanket | Silica Fiber Felt | Glass Wool | |
Shrinkage (%) | <1.0 | <1.0 | <1.0 | <1.0 |
Bulk density (kg·m−3) | 197.9 ± 6.4 | 115.0 ± 3.6 | 100.3 ± 5.3 | 120.1 ± 7.3 |
Contact Angle (°) | 125.0 ± 5.8 | 131.7 ± 5.9 | 134.0 ± 5.6 | 137.5 ± 6.9 |
BET specific surface area (m2.g−1) | 223.0 ± 2.9 | 442.4 ± 4.9 | 654.8 ± 6.5 | 204.2 ± 1.3 |
BJH desorption average pore size(nm) | 8.3 | 10.4 | 7.4 | 12.0 |
Thermal conductivity 1 (mW·m−1·K−1) | 35.91 ± 0.43 | 24.30 ± 0.25 | 25.37 ± 0.06 | 58.05 ± 0.01 |
Thermal conductivity 2 (mW·m−1·K−1) | 28.1 ± 1.7 | 16.4 ± 1.0 | 23.2 ± 1.4 | 28.7 ± 1.7 |
Loss of mass 3 (%) | 42.5 | 3.4 | 1.9 | 0.8 |
Composite Samples Reinforced with Fibers: | Young’s Modulus (kPa) | Energy Loss after | Recovery after the Test: | Recovery after 24 h: | Maximum Compression Stress (a) (MPa) | |||
---|---|---|---|---|---|---|---|---|
10% Compression (%) | 25% of Compression (%) | 10 Cycles of 10% Compression (%) | 25% of Compression (%) | 10 Cycles of 10% Compression (%) | 25% of Compression (%) | |||
Recycled tire textile fibers | 109.5 ± 9.2 | 44.0 ± 0.7 | 59.8 | 89.6 | 78.7 | 96.2 | 94.0 | 6.5 |
Polyester fiber blanket | 231.9 ± 16.7 | 15.4 ± 1.0 | 35.7 | 98.0 | 97.5 | 99.7 | 99.4 | 9.4 |
Silica fiber felt | 36.9 ± 9.9 | 30.1 ± 1.5 | 38.9 | 91.2 | 96.9 | 97.6 | 97.0 | 8.1 |
Glass wool | 138.14 ± 13.4 | 48.8 ± 2.7 | 57.6 | 86.5 | 75.6 | 99.8 | 99.2 | 10.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamy-Mendes, A.; Pontinha, A.D.R.; Santos, P.; Durães, L. Aerogel Composites Produced from Silica and Recycled Rubber Sols for Thermal Insulation. Materials 2022, 15, 7897. https://doi.org/10.3390/ma15227897
Lamy-Mendes A, Pontinha ADR, Santos P, Durães L. Aerogel Composites Produced from Silica and Recycled Rubber Sols for Thermal Insulation. Materials. 2022; 15(22):7897. https://doi.org/10.3390/ma15227897
Chicago/Turabian StyleLamy-Mendes, Alyne, Ana Dora Rodrigues Pontinha, Paulo Santos, and Luísa Durães. 2022. "Aerogel Composites Produced from Silica and Recycled Rubber Sols for Thermal Insulation" Materials 15, no. 22: 7897. https://doi.org/10.3390/ma15227897
APA StyleLamy-Mendes, A., Pontinha, A. D. R., Santos, P., & Durães, L. (2022). Aerogel Composites Produced from Silica and Recycled Rubber Sols for Thermal Insulation. Materials, 15(22), 7897. https://doi.org/10.3390/ma15227897