High-Strain-Rate Compression of Elastomers Subjected to Temperature and Humidity Conditions
Abstract
:1. Introduction
2. Theoretical Background
2.1. High Strain Rate
2.2. Split Hopkinson (Kolsky) Pressure Bar Approach
3. Materials and Methods
3.1. Materials and Specimens
3.2. Experimental Set-Up
3.2.1. Kolsky Bar
3.2.2. High-Strain-Rate Range
3.2.3. Environmental Conditions
Temperature Regulations
Humidity Regulations
3.2.4. Water-Absorption Characteristic
4. Results and Discussion
4.1. Changing Temperature Conditions
4.2. Changing Humidity Conditions
4.2.1. Water Absorption
4.2.2. Regulating Real Humidity from the Ambient Conditions
4.2.3. Increasing Real Humidity at Elevated Temperature
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gkouti, E.; Yenigun, B.; Czekanski, A. Transient Effects of Applying and Removing Strain on the Mechanical Behaviour of Rubber. Materials 2020, 13, 4333. [Google Scholar] [CrossRef] [PubMed]
- Drozdov, A. Viscoelastic Structures; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Thomas, A.; Muniandy, K. Absorption and desorption of water in rubbers. Polymer 1987, 28, 408–415. [Google Scholar] [CrossRef]
- Park, J.; Kim, D. Preparation and characterization of water-swellable natural rubbers. J. Appl. Polym. Sci. 2001, 80, 115–121. [Google Scholar] [CrossRef]
- Oyama, Y.; Hiejima, Y.; Nitta, K.H. Swelling behavior of butyl and chloroprene rubber composites with poly (sodium acrylate) showing high water uptake. J. Appl. Polym. Sci. 2020, 137, 48535. [Google Scholar] [CrossRef]
- Roland, C. Mechanical behavior of rubber at high strain rate. Rubber Chem. Technol. 2006, 79, 429–459. [Google Scholar] [CrossRef]
- Chaudhry, M.S.; Czekanski, A. Evaluating FDM Process Parameter Sensitive Mechanical Performance of Elastomers at Various Strain Rates of Loading. Materials 2020, 13, 3202. [Google Scholar] [CrossRef]
- Gkouti, E.; Yenigun, B.; Jankowski, K.; Czekanski, A. Experimental Study of Mullins Effect in Natural Rubber for Different Stretch Conditions. In Proceedings of the ASME 2020 International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC 2020), St. Louis, MO, USA, 16–19 August 2020. [Google Scholar]
- Fan, J.; Weerheijm, J.; Sluys, L. High-strain-rate tensile mechanical response of a polyurethane elastomeric material. Polymer 2005, 65, 72–80. [Google Scholar] [CrossRef]
- Song, B.; Chen, W. One-Dimension Dynamic Compressive Behavior of EPDM Rubber. J. Eng. Mater. Technol. 2003, 125, 294–301. [Google Scholar] [CrossRef]
- Chen, W.; Lu, F.; Zhou, B. A Quartz-crystal-embedded Split Hopkinson Pressure Bar for Soft Materials. Exp. Mech. 2000, 40, 1–6. [Google Scholar] [CrossRef]
- Zhao, H.; Gary, G. On the use of SHPB techniques to determine the dynamic behaviour of materials in the range of small strains. Int. J. Solids Struct. 1996, 33, 3363–3375. [Google Scholar] [CrossRef]
- Song, B.; Chen, W. Dynamic Stress Equilibration in Split Hopkinson Pressure Bar Tests on Soft Materials. Exp. Mech. 2004, 44, 300–312. [Google Scholar] [CrossRef]
- Davies, E.; Hunter, S. The dynamic compression testing of solids by the method of the Split Hopkinson pressure bar. J. Mech. Phys. Solids 1963, 11, 155–179. [Google Scholar] [CrossRef]
- Chen, W.; Song, B. Split Hopkinson (Kolsky) Bar: Design, Testing and Applications; Springer: New York, NY, USA, 2011. [Google Scholar]
- Chaudhry, M.S.; Czekanski, A. FE Analysis of Critical Testing Parameters in Kolsky. Materials 2019, 12, 3817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maunier, L.; Chagnon, G.; Favier, D.; Orgeas, L.; Vacher, P. Mechanical experimental characterization and numerical modelling of an unfilled silicone rubber. Polym. Test. 2008, 27, 765–777. [Google Scholar] [CrossRef] [Green Version]
- Akbar, M.; Ullah, R.; Karim, M. Interpreting surface degradation of HTV silicone rubber filled with micro/nano-silica under AC and DC voltages. J. Electron. Mater. 2020, 49, 5399–5410. [Google Scholar] [CrossRef]
- Ahmad, F.; Akbar, M.; Ullah, R. AC performance of HTV-SR and its hybrids loaded with nano-/micro-silica/ATH fillers. Arab. J. Sci. Eng. 2021, 46, 1103–1114. [Google Scholar] [CrossRef]
- Ullah, R.; Akbar, M.; Amin, S. Measuring electrical, thermal and mechanical properties of DC-stresses HTV silicone rubber loaded with nano/micro-fillers exposed to long-term aging. Appl. Nanosci. 2020, 10, 2101–2111. [Google Scholar] [CrossRef]
- Guo, L.; Lv, Y.; Deng, Z.; Wang, Y.; Zan, X. Tension testing of silicone rubber at high strain rates. Polym. Test. 2016, 50, 270–275. [Google Scholar] [CrossRef]
- Chang, H.; Wan, Z.; Chen, X.; Wan, J.; Luo, L.; Zhang, H.; Shu, S.; Tu, Z. Temperature and humidity effect on aging of silicone rubbers as sealing materials for proton exchange membrane fuel cell applications. Appl. Therm. Eng. 2016, 104, 472–478. [Google Scholar] [CrossRef]
- Sylvestre, A.; Rain, P.; Rowe, S. Silicone Rubber Subjected to Combined Temperature and Humidity Effects. In Proceedings of the Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Cancun, Mexico, 20–24 October 2002; pp. 355–358. [Google Scholar]
- Schirrer, R.; Thepin, P.; Torres, G. Water absorption, swelling, rupture and salt release in salt silicone rubber compounds. J. Mater. Sci. 1992, 27, 3424–3434. [Google Scholar] [CrossRef]
- Southerm, E.; Thomas, A. Diffusion of Water in Rubbers; American Chemical Society: Washington, DC, USA, 1980; pp. 375–386. [Google Scholar]
- Gorham, D.; Wu, X. Stress equilibrium in the Split Hopkinson Bar Test. Le J. De Phys. 1997, 7, 91–96. [Google Scholar]
Rubber | Operating Temp. | Glass Transition Temp. |
---|---|---|
Natural rubber | −30 °C to 60 °C | −70 °C |
Silicone | −62 °C to 260 °C | −90 °C |
EPDM | −40 °C to 107 °C | −60 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkouti, E.; Chaudhry, M.S.; Yenigun, B.; Czekanski, A. High-Strain-Rate Compression of Elastomers Subjected to Temperature and Humidity Conditions. Materials 2022, 15, 7931. https://doi.org/10.3390/ma15227931
Gkouti E, Chaudhry MS, Yenigun B, Czekanski A. High-Strain-Rate Compression of Elastomers Subjected to Temperature and Humidity Conditions. Materials. 2022; 15(22):7931. https://doi.org/10.3390/ma15227931
Chicago/Turabian StyleGkouti, Elli, Muhammad Salman Chaudhry, Burak Yenigun, and Aleksander Czekanski. 2022. "High-Strain-Rate Compression of Elastomers Subjected to Temperature and Humidity Conditions" Materials 15, no. 22: 7931. https://doi.org/10.3390/ma15227931
APA StyleGkouti, E., Chaudhry, M. S., Yenigun, B., & Czekanski, A. (2022). High-Strain-Rate Compression of Elastomers Subjected to Temperature and Humidity Conditions. Materials, 15(22), 7931. https://doi.org/10.3390/ma15227931