The Effects of Pt-Doped TiO2 Nanoparticles and Thickness of Semiconducting Layers at Photoanode in the Improved Performance of Dye-Sensitized Solar Cells
Abstract
:1. Introduction
2. Experimental Techniques
2.1. Chemicals and Reagents
2.2. Hydrothermal Processing
2.3. Layering Procedure on the Photo Anodes and Their Control
2.4. Electrochemical Impedance Spectroscopy (EIS)-Nyquist Curve
2.5. Characterization Equipment
3. Analysis of Results
3.1. Analysis of the XRD Result
3.2. UV-Visible Spectra
3.3. TEM Analysis
3.4. EDS Spectra
3.5. Electrical Properties
3.5.1. Performance of DSSC
3.5.2. Electrochemical Impedance Spectroscopy
3.5.3. Incident Photon-to-Current Conversion Efficiency (IPCE) Spectra of TiO2-Based DSSC
3.5.4. The Adequate Thickness of Semiconducting Layers at the Photoanode
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grätzel, M. Molecular photovoltaics that mimics photosynthesis. Pure Appl. Chem. 2001, 73, 338–344. [Google Scholar] [CrossRef] [Green Version]
- Haque, M.M.; Muneer, M.; Bahnemann, D.W. Semiconductor mediated photocatalyzed degradation of a herbicide derivative, Chlorotoluron, in an aqueous suspension. Environ. Sci. Technol. 2006, 40, 4765–4770. [Google Scholar] [CrossRef] [PubMed]
- Paschoalino, F.C.S.; Paschoalino, M.P.; Jordão, E.; de Figueiredo, J.W. Evaluation of TiO2, ZnO, CuO, and Ga2 O3 on the photocatalytic degradation of phenol using an annular flow photocatalytic reactor. Open J. Phys. Chem. 2012, 2, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Ba-Abbad, M.M.; Kadhum, H.A.A.; Mohamad, A.B.; Takriff, M.S.; Sopian, K. The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol-gel. J. Alloys Compd. 2013, 550, 63–70. [Google Scholar] [CrossRef]
- Wang, H.; Baek, S.; Song, J.; Lee, J.; Lim, S. Microstructural and optical characteristics of solution-grown Ga-doped ZnO nanorod arrays. Nanotechnology 2008, 19, 075607–075612. [Google Scholar]
- Anandan, S. Recent improvement and rising challenges in DSSC. Sol. Energy Mater. Sol. Cells 2007, 91, 843–846. [Google Scholar] [CrossRef]
- Hsin-Hung, O.; Shang-Lien, L. Effect of Pt/Pd doped TiO2 on the photocatalytic degradation of trichloroethylene. J. Mol. Cat. A Chem 2007, 275, 200–205. [Google Scholar]
- Aga, K.W.; Efa, M.T.; Beyene, T.T. Effects of Sulfur doping and temperature on the energy bandgap of ZnO nanoparticles and their antibacterial activities. ACS Omega 2022, 7, 10796–10803. [Google Scholar] [CrossRef]
- Zhi, M.; Zhu, L.; Ye, Z.; Wang, F.; Zhao, B. Preparation and properties of ternary ZnMgO nanowires. J. Phys. Chem. B 2005, 109, 23930–23934. [Google Scholar] [CrossRef]
- Hembram, K.; Sivaprahasam, D.; Rao, T.N. Combustion synthesis of doped nanocrystalline ZnO powders for varistors applications. J. Eur. Ceram. Soc. 2011, 31, 1905–1913. [Google Scholar] [CrossRef]
- Wang, R.C.; Liu, C.P.; Huang, J.L.; Chen, S.J. Single-crystalline Al ZnO nanowires/nanotubes synthesized at low temperature. Appl. Phys. Lett. 2006, 88, 0231. [Google Scholar]
- Gupta, A.; Joeri, F.M.D. Hydrogen clathrates: Next generation hydrogen storage materials. Energy. Stor. Maters 2021, 41, 69–107. [Google Scholar]
- Rashad, M.; Tekin, H.; Zakaly, H.M.; Pyshkina, M.; Issa, S.A.; Susoy, G. Physical and nuclear shielding properties of newly synthesized magnesium oxide and zinc oxide nanoparticles. Nucl. Eng. Technol. 2020, 52, 2078–2084. [Google Scholar] [CrossRef]
- Song, Q.; Zhang, Z.J. Shape control and associated magnetic properties of spinel cobalt errite nanocrystals. J. Am. Chem. Soc. 2009, 126, 6164–6168. [Google Scholar] [CrossRef]
- Verma, A.; Khan, F.; Kar, D.; Chakravarty, B.C.; Singh, S.N.; Husain, M. Sol-gel derived aluminum-doped zinc oxide for application as anti-reflection coating in terrestrial silicon solar Cells. Thin Sol. Films 2010, 518, 2649–2653. [Google Scholar] [CrossRef]
- Ogi, T.; Hidayat, D.; Iskandar, F.; Purwanto, A.; Okuyama, K. Direct synthesis of highly crystalline transparent conducting oxide nanoparticles by low-pressure spray pyrolysis. Adv. Powder Technol. 2009, 20, 203–209. [Google Scholar] [CrossRef]
- Maiyalagan, T.R.; Das, S.J. Optical studies of nano-structured La-doped ZnO prepared by combustion method. Mat. Sci. Semicond. Process. 2012, 15, 308–313. [Google Scholar]
- Anandan, S.; Vinu, A.; Lovely, K.L.P.S.; Gokulakrishnan, N.; Srinivasu, P.; Mori, T.; Murugesan, V.; Sivamurugan, V.; Ariga, K. Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension. J. Mol. Catal. A Chem. 2007, 266, 149–157. [Google Scholar] [CrossRef]
- Meyer, B.K.; Alves, H.; Hofmann, D.M.; Kriegseis, W.; Forster, D.; Bertram, F.; Christen, J.; Hoffmann, A.; Straßburg, M.; Dworzak, M.; et al. Bound exciton and donor-acceptor pair recombinations in ZnO. Phys. Status Solidi B 2004, 241, 231–260. [Google Scholar] [CrossRef]
- Korake, P.V.; Dhabbe, R.S.; Kadam, A.N.; Gaikwad, Y.B.; Garadkar, K.M. Highly active lanthanum doped ZnO nanorods for photodegradation of metasystem. J. Photochem. Photobiol. B Biol. 2014, 130, 11–19. [Google Scholar] [CrossRef]
- Lieber, C.M. One dimensional nanostructures: Chemistry, Physics and Applications. Solid State Commun. 1998, 107, 6164–6168. [Google Scholar] [CrossRef]
- Chih-Hung, T.; Chia-Ming, L.; Yen-Cheng, L. Increasing the efficiency of DSSC by adding Nickel Oxide nanoparticles by adding TiO2 working electrodes. Coatings 2020, 10, 195. [Google Scholar]
- Chen, Z.; Cai, Y.; Lu, Y.; Cao, Q.; Lv, P.; Zhang, Y.; Liu, W. Preparation and Performance study of Carboxyl- functionalized graphene oxide composite polyaniline based water composite Epoxy Zinc- rich Coatings. Coatings 2022, 12, 824. [Google Scholar] [CrossRef]
- Jasim, K.I. Dye-sensitized solar cells—Working principles, challenges, and opportunities. Solar cells—Dye-Sensitized Devices; Kosyachenko, L.A., Ed.; Intech Open: London, UK, 2011. [Google Scholar]
- Tang, Z.; Kotov, N.A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 2002, 297, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Rosario, A.V.; Pereira, E.C. The role of Pt addition on the photocatalytic activity of TiO2 nanoparticles: The limit between doping and metallization. App. Catal. B Environ. 2014, 144, 840. [Google Scholar] [CrossRef]
- Garcia, R.; Tello, M. Size and shape controlled growth of molecular nanostructures on silicon oxide templates. Nano Lett. 2004, 4, 1115–1119. [Google Scholar] [CrossRef]
- Chunqiao, G.; Changsheng, X.; Mullin, H.; Shanghai, G.; Zikui, B.; Dawen, Z. Structural characteristics, and UV-light enhanced gas sensitivity of La-doped ZnO Nanoparticles. Mater. Sci. Eng. B 2007, 141, 43–48. [Google Scholar]
- Cheng, H.C.; Chen, C.F.; Tsay, C.Y. Transparent ZnO thin-film transistor fabricated by sol-gel and chemical bath deposition combination method. Appl. Phys. Lett. 2007, 90, 012113. [Google Scholar] [CrossRef] [Green Version]
- Sahay, P.P.; Nath, R.K. Al-doped zinc oxide thin films for liquid petroleum gas (LPG) sensors. Sens. Actuators B 2008, 133, 222–227. [Google Scholar] [CrossRef]
- Hoyer, P. semiconductor nanotube formation by a two-step template process. Adv. Mater. 1996, 8, 857–859. [Google Scholar] [CrossRef]
- Yang, J.H.; Bark, C.W.; Kim, K.H.; Choi, H.W. Characterization of the DSSC using TiO2 nanotubes treated with TiCl4. Materials 2014, 7, 3522–3532. [Google Scholar] [PubMed]
- Ali, M.K.M.E.; Ali, S.M.U.; Hashim, U. Sol-gel synthesis of Pd doped ZnO nanorods for room temperature hydrogen sensing applications. Ceram. Int. 2013, 39, 6461–6466. [Google Scholar]
- Liu, Z.; Liu, C.; Ya, J.; Lei, E. Controlled synthesis of ZnO and TiO2 nanotubes by chemical method and their application in dye-sensitized solar cells. Renew. Energy 2011, 36, 1177–1181. [Google Scholar] [CrossRef]
- Serier, H.; Gaudon, M.; Menetrier, M. Al-doped ZnO powdered materials: Al solubility limit and IR absorption properties. Solid State Sci. 2009, 11, 1192–1197. [Google Scholar] [CrossRef]
- Zhong, J.B.; Li, J.Z.; He, X.Y.; Zeng, J.; Lu, Y.; Hu, W.; Lin, K. Improved photocatalytic performance of Pd-doped ZnO. Curr. Appl. Phys. 2012, 12, 998–1001. [Google Scholar] [CrossRef]
- González-Hernández, R.; López-Pérez, W.; Rodríguez, M.J.A. Magnetic ordering and electronic properties of Pd-doped ZnO. Phys. Status Solidi B 2012, 249, 198–201. [Google Scholar] [CrossRef]
- Assadi, M.H.N.; Zhang, Y.; Zheng, R.-K.; Ringer, S.P.; Li, S. Structural and electronic properties of Eu- and Pd-doped ZnO. Nanoscale Res. Lett. 2011, 6, 357. [Google Scholar]
- Han, Z.; Li, S.; Chu, J.; Chen, Y. Electrospun Pd-doped ZnO nanofibers for enhanced photocatalytic degradation of methylene blue. J. Sol-Gel Sci. Technol. 2013, 66, 139–144. [Google Scholar] [CrossRef]
- Lin, J.; Yu, J.C.; Lo, D.; Lam, S.K. Photocatalytic activity of rutile Ti1-x Sex O2 solid solutions. J. Catal. 1999, 183, 368–372. [Google Scholar] [CrossRef]
- Stengl, V.; Bakardjieva, S.; Murata, N. Preparation and photocatalytic activity of rare-earth-doped TiO2 nanoparticles. Mater. Chem. Phys. 2009, 114, 217–226. [Google Scholar] [CrossRef]
- Saif, A.A.; Ajamal, Z.; Sauli, Z.; Poopalan, P. Frequency-Dependent Electrical Properties of Ferroelectric Ba0.8 Sr0.2 TiO2 thin Film. Mater. Sci. 2011, 17, 186–190. [Google Scholar]
- Stengl, V.; Bakardjieva, S. Molybdenum-doped anatase and its extraordinary photocatalytic activity in the degradation of orange II in the UV and Vis regions. J. Phys. Chem. C 2010, 114, 19308–19317. [Google Scholar] [CrossRef]
- Gafoor, A.K.A.; Thomas, J.; Mustafa, M.M.; Pradyumnan, P.P. Effect of Sr3+ Doping on dielectric properties of Anatase TiO2 Nanoparticles synthesized by a low-temperature hydrothermal method. J. Electron. Mater. 2011, 40, 2152–2158. [Google Scholar] [CrossRef]
- Subashini, G.; Andrews, N.G. Titanium nitride nanoflower buds as Pt-free counter electrodes for dye-sensitized solar cells. Appl. Nano lett. 2021, 4, 8251–8261. [Google Scholar]
- Liqiang, J.; Xiaojun, S.; Baifu, X.; Baiqi, W.; Weimin, C.; Hongganga, F. The preparation and characterization of La-doped TiO2 nanoparticles and their photocatalytic activity. J. Solid State Chem. 2004, 177, 3375–3382. [Google Scholar] [CrossRef]
- Manarola, M.H.; Parmar, B.H.; Pillai, A.S.; Joshi, V.S. Structural Optical and Electrical properties of Titanium Dioxide Nanoparticle. Multi-Discip. Edu Glob. Quest 2012, 1, 138–145. [Google Scholar]
- Prodromakis, T.; Papavassiliou, C. Engineering the Maxwell-Wagner polarization effect. Appl. Surf. Sci. 2009, 255, 6989–6994. [Google Scholar] [CrossRef]
- Jeeevanandan, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A. Review on nanoparticles and nanostructured materials; history, sources, Toxicity, and Regulations. Best J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar]
% Pt Content (M) | IPEC Peak (%) | JSC (mA/cm2) | (Voc) (volt) | F | Efficiency (%) |
---|---|---|---|---|---|
Undoped TiO2 | 60 | 11 | 0.75 | 0.54 | 1.45 |
TiO2 doped with 0.15M Pt | 70 | 12.5 | 0.72 | 0.59 | 4.25 |
TiO2 doped with 0.25 M Pt | 72 | 13.1 | 0.86 | 0.69 | 5.22 |
TiO2 doped with 0.35 M Pt | 75 | 16.5 | 0.92 | 0.79 | 11.92 |
TiO2 doped with 0.45 M Pt | 78 | 17.5 | 0.96 | 0.89 | 14.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mujahid, M.; Al-Hartomy, O.A. The Effects of Pt-Doped TiO2 Nanoparticles and Thickness of Semiconducting Layers at Photoanode in the Improved Performance of Dye-Sensitized Solar Cells. Materials 2022, 15, 7941. https://doi.org/10.3390/ma15227941
Mujahid M, Al-Hartomy OA. The Effects of Pt-Doped TiO2 Nanoparticles and Thickness of Semiconducting Layers at Photoanode in the Improved Performance of Dye-Sensitized Solar Cells. Materials. 2022; 15(22):7941. https://doi.org/10.3390/ma15227941
Chicago/Turabian StyleMujahid, M., and Omar A. Al-Hartomy. 2022. "The Effects of Pt-Doped TiO2 Nanoparticles and Thickness of Semiconducting Layers at Photoanode in the Improved Performance of Dye-Sensitized Solar Cells" Materials 15, no. 22: 7941. https://doi.org/10.3390/ma15227941
APA StyleMujahid, M., & Al-Hartomy, O. A. (2022). The Effects of Pt-Doped TiO2 Nanoparticles and Thickness of Semiconducting Layers at Photoanode in the Improved Performance of Dye-Sensitized Solar Cells. Materials, 15(22), 7941. https://doi.org/10.3390/ma15227941