Research on the Working Performance and the Corresponding Mechanical Strength of Polyaluminum Sulfate Early Strength Alkali-Free Liquid Accelerator Matrix Cement
Abstract
:1. Introduction
2. Experimental
2.1. Raw Materials
2.2. Sample Preparation
2.3. Measurement Methods
2.3.1. Mechanical Strengths
2.3.2. Measurement of Hydration Heat
2.3.3. Measurement of SEM and XRD
3. Experimental Results and Analysis
3.1. Basic Properties of Cement Paste with Accelerator
3.2. Influence of Fly Ash on Basic and Compressive Performances
3.3. Influence of Blast Furnace Slag on Basic and Compressive Performances
3.4. Heat of Hydration Analysis
3.5. XRD Pattern Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, M.Y.; He, Z.; Cai, X.H. Properties of alkali-free liquid cement accelerator and its accelerating mechanism. New Build. Mater. 2012, 39, 36–40. [Google Scholar]
- He, X.Y.; Zheng, Z.Q.; Yang, J.; Su, Y.; Wang, T.W. Feasibility of incorporating autoclaved aerated concrete waste for cement replacement in sustainable building materials. J. Clean. Prod. 2020, 250, 119455. [Google Scholar] [CrossRef]
- Li, Q.Q. Discussion on the construction process of tunnel shotcrete. Transp. Stand. 2012, 23, 97–99. [Google Scholar]
- Liu, J.M. Tunnel wet shotcrete construction process. Small Medium-Sized Enterp. Manag. Sci. Technol. 2012, 7, 139–140. [Google Scholar]
- Yang, L.Y.; Tian, J.T.; Yang, Y.B. Research status of liquid accelerator for shotcrete. Tunn. Constr. 2017, 37, 10. [Google Scholar]
- Zhang, L.C.; Li, S.C.; Yan, Q. Study on the Influence of a New Liquid Accelerator on Shotcrete Performance. Int. J. Hybrid Inf. Technol. 2017, 10, 11–26. [Google Scholar] [CrossRef]
- Li, Y.; Cai, B.Q.; Wu, Y.S. Research progress of quick-setting agents for shotcrete. Concrete 2020, 9, 121–125. [Google Scholar]
- Wang, J.B.; Niu, D.T.; Zhang, Y.L. Mechanical properties, permeability and durability of accelerated shotcrete. Constr. Build. Mater. 2015, 95, 312–328. [Google Scholar] [CrossRef]
- Ma, J.Y.; Ma, L.; Wang, L. Performance of alkali-free and chlorine-free liquid quick setting agents and their mechanism of action. J. Wuhan Univ. Technol. 2012, 34, 14–18. [Google Scholar]
- Yan, Q.S.; Bin, X.; Li, H.B. Preparation and Performance of a New-Type Alkali-Free Liquid Accelerator for Shotcrete. Adv. Mater. Sci. Eng. 2017, 2017, 1264590. [Google Scholar]
- Niu, D.T.; Wang, J.B.; Ding, S. Effect of hydration age on the microstructure of cement-fly ash paste mixed with accelerato. Concrete 2015, 1, 4. [Google Scholar]
- Sun, Z.P.; Ma, Z.Y.; Tian, J.T. Study on the role of magnesium fluorosilicate in alkali-free liquid quick-setting agent of aluminum sulfate type. Concr. World 2021, 3, 68–72. [Google Scholar]
- Shui, L.L.; Yang, H.J.; Sun, Z.P. Research progress on the mechanism of action of polycarboxylic acid-based water reducing agents. J. Constr. Mater. 2020, 23, 64–69+76. [Google Scholar]
- Zhang, G. Effects of main components of accelerators on cement hydration and mechanical properties. J. Railw. 2020, 42, 7. [Google Scholar]
- Zhang, J.B. Preparation and performance study of fluorine-free alkali-free liquid quicklime. Guilin Univ. Technol. 2021, 42, 7. [Google Scholar]
- Yang, R.H.; He, T.S.; Xu, Y.D. Preparation of alkali free liquid accelerator for shotcrete with fluorosilicic acid waste liquid and its accelerating mechanism. Cem. Concr. Compos. 2022, 131, 104600. [Google Scholar] [CrossRef]
- Xu, Y.D.; He, T.S.; Yang, R.H. Effect of simulated different concentrati-ons of sulfate on early properties of mineral admixture-cement-liquid accelerator system. J. Water Process Eng. 2022, 47, 102829. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Li, G.X.; Zhang, G. Influence of liquid accelerators on s-hotcrete in karst area tunnels. Case Stud. Constr. Mater. 2022, 16, e01002. [Google Scholar]
- Wu, Z.H.; Liu, J.Y.; Zhang, G.L. Effect of aluminum sulfate alkali-free liquid accelerator with compound alkanol lamine on the hydration processes of Portland cement. Constr. Build. Mater. 2021, 308, 125101. [Google Scholar] [CrossRef]
- Niu, M.D.; Li, G.X.; Zhang, J.B. Preparation of alkali-free liquid accelerator based on aluminum sulfate and its accelerating mechanism on the hydration of cement pastes. Constr. Build. Mater. 2020, 253, 119246. [Google Scholar] [CrossRef]
- He, T.S.; Yang, R.H.; Guo, X.Q. Effects of liquid accelerators on carbonation properties of C3A and C3S hydration products. Adv. Cem. Res. 2020, 33, 367–376. [Google Scholar] [CrossRef]
- Zhang, L.C.; Qin, Y.; Lin, Z. Study on the effect of new type liquid accelerator onthe performance of shotcrete. Frat. Ed. Integrità Strutt. 2017, 11, 356–368. [Google Scholar] [CrossRef] [Green Version]
- Ying, Q.; Ding, B.; Gan, J.Z. Mechanism and preparation of liquid alkali-free liquid setting accelerator for shotcrete. IOP Conf. Ser. Mater. Sci. Eng. 2017, 182, 012034. [Google Scholar] [CrossRef]
- Wan, Z.M.; He, T.S.; Ma, X.D. Research on the synergy of micro-nan-bubble water and alkali-free liquid accelerator to improve the early strength and hydration rate of cement. J. Build. Eng. 2022, 57, 104909. [Google Scholar] [CrossRef]
- Liu, J. Preparation of Al2(SO4)3 Alkali-Free Liquid Accelerator and Research on Accelerating Mechanism; Southwest Jiaotong University: Chengdu, China, 2021. [Google Scholar]
- Qian, D.X.; Yao, Y.S.; Cao, J. Study on the Effect of Accelerator on the Properties of Shotcrete. Concrete 2002, 9, 2. [Google Scholar]
- Tang, M.; Sun, Y.D.; Tang, M. Study on the adaptability of liquid neutral accelerator and ready-mixed concrete. Concrete 2006, 28, 48–50. [Google Scholar]
- Zhang, J.G.; Liu, J.P. Influence of liquid accelerator on durability of shotcrete. Mod. Tunn. Technol. 2012, 49, 169–174. [Google Scholar]
- Wang, X.L.; Song, X.F. The adaptability of accelerators and cement and the mechanism of action of accelerators. J. Xi’an Univ. Archit. Technol. (Nat. Sci. Ed.) 2010, 42, 745–750. [Google Scholar]
- Zeng, L.P.; Wang, W.; Zhang, X.L. Research status of liquid alkali-free accelerator and research on cement adaptability mechanism. Build. Mater. Dev. Orientat. 2019, 17, 11–14. [Google Scholar]
- Wang, L.; Zhao, X.; Gao, R.J. The latest research and development progress and market dynamics of my country’s concrete admixture industry. Concr. Cem. Prod. 2018, 7, 1–5. [Google Scholar]
- GB/T 35159-2017; Accelerator for Shotcrete. The State Bureau of Quality and Technical Supervision: Beijing, China, 2017.
- GB/T17671-1999; Method of Testing Cements-Determination of Strength. The State Bureau of Quality and Technical Supervision: Beijing, China, 1999.
- GB/T 12959-2008; Method for Determination of Heat of Hydration of Cement. The State Bureau of Quality and Technical Supervision: Beijing, China, 2008.
- SY/T 5162-1997; Methods for Analysis of Rock Samples by Scanning Electron Microscopy. Oil Standard: Beijing, China, 1997.
- Zhang, J.B. Study on Preparation and Action Mechanism of Aluminum Sulfate Alkali-Free Liquid Accelerating Agent; Xi‘an University of Architecture and Technology: Xian, China, 2020. [Google Scholar]
- Chen, Y.; Zhang, Y.; Wei, K.; Wang, Y. Study on preparation and application of high adaptability alkali-free liquid accelerating agent. New Build. Mater. 2022, 49, 122–127. [Google Scholar]
- Zhou, H.Y.; Zhang, Y. Preparation and Properties of Alkali-Free Liquid Accelerator. Concr. Cem. Prod. 2021, 49, 28–31+36. [Google Scholar]
- Yang, L.Y.; Tian, J.T.; Hu, X.F. Preparation and Properties of New Alkali-Free Liquid Accelerator. New Build. Mater. 2017, 44, 5. [Google Scholar]
- Yang, J.; Zeng, J.Y.; He, X.Y.; Zhang, Y.N.; Su, Y.; Tan, H.B. Sustainable clinker-free solid waste binder produced from wet-ground granulated blast-furnace slag, phosphogypsum and carbide slag. Constr. Build. Mater. 2022, 330, 127218. [Google Scholar] [CrossRef]
- Pang, L.F.; Sun, H.Q.; Zhou, Z.B. Preparation and Properties of Alkali-Free Liquid Accelerator. New Build. Mater. 2018, 45, 4. [Google Scholar]
- Wu, W. Development of a new alkali-free liquid accelerating agent. New Build. Mater. 2022, 49, 124–128. [Google Scholar]
- Zhang, G.L.; Wu, Z.H.; Deng, Y.; Liu, J.Y.; Wang, Y. Preparation and stability of aluminum sulfate alkali-free liquid accelerator modified by EDTA. J. Mater. Sci. Eng. 2022, 40, 466–472+536. [Google Scholar]
- Yu, S.Q.; Feng, E.Y.; Li, C.H. Preparation and mechanism of low-sulfur alkali-free accelerator. World Build. Mater. 2019, 40, 5. [Google Scholar]
- Zhao, W.; Lei, S.X.; Xiao, Q.H. Experimental Research on Hydration Mechanism and Engineering Characteristics of New Accelerators. Railw. Stand. Des. 2019, 63, 142–147. [Google Scholar]
- Cai, Y.; Liu, X.Y.; Kong, X.M. High and low temperature adaptability and coagulation mechanism of liquid accelerators with different alkalinities. J. Silic. 2016, 44, 1563–1570. [Google Scholar]
- Zhang, S.X.; Wang, D.M.; Zhang, Z. Research on a new type of alkali-free liquid accelerator. Bull. Silic. 2014, 33, 2946–2951. [Google Scholar]
- Yang, J.; Zeng, J.Y.; He, X.Y.; Hu, H.C.; Su, Y.; Bai, H. Eco-friendly UHPC prepared from high volume wet-grinded ultrafine GGBS slurry. Constr. Build. Mater. 2021, 308, 125057. [Google Scholar] [CrossRef]
Materials | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Na2Oqe | f-CaO |
---|---|---|---|---|---|---|---|---|
Cement | 21.6 | 4.6 | 3.9 | 63.7 | 3.2 | 2.3 | 0.52 | 0.95 |
Fly ash | 51.24 | 34.12 | 4.23 | 2.9 | 0.62 | 1.21 | 1.83 | 0.54 |
BFS | 33.21 | 17.32 | 0.84 | 36.21 | 9.34 | 2.82 | 0.89 | 0.019 |
Cement | Fly Ash | Slag | Standard Sand | Water | Accelerated Agent |
---|---|---|---|---|---|
100 | 0 | 0 | 0 | 33.5 | 3 |
100 | 0 | 0 | 0 | 33 | 4 |
100 | 0 | 0 | 0 | 32.5 | 5 |
100 | 0 | 0 | 0 | 32 | 6 |
100 | 0 | 0 | 0 | 31.5 | 7 |
100 | 0 | 0 | 0 | 31 | 8 |
95 | 5 | 0 | 0 | 31.5 | 7 |
90 | 10 | 0 | 0 | 31.5 | 7 |
85 | 15 | 0 | 0 | 31.5 | 7 |
80 | 20 | 0 | 0 | 31.5 | 7 |
75 | 25 | 0 | 0 | 31.5 | 7 |
95 | 0 | 5 | 0 | 31.5 | 7 |
90 | 0 | 10 | 0 | 31.5 | 7 |
85 | 0 | 15 | 0 | 31.5 | 7 |
80 | 0 | 20 | 0 | 31.5 | 7 |
75 | 0 | 25 | 0 | 31.5 | 7 |
100 | 0 | 0 | 150 | 50 | 0 |
100 | 0 | 0 | 150 | 49.5 | 1 |
100 | 0 | 0 | 150 | 49 | 2 |
100 | 0 | 0 | 150 | 48.5 | 3 |
100 | 0 | 0 | 150 | 48 | 4 |
100 | 0 | 0 | 150 | 47.5 | 5 |
100 | 0 | 0 | 150 | 47 | 6 |
100 | 0 | 0 | 150 | 46.5 | 7 |
100 | 0 | 0 | 150 | 46 | 8 |
100 | 0 | 0 | 150 | 45.5 | 9 |
95 | 5 | 0 | 150 | 46.5 | 7 |
90 | 10 | 0 | 150 | 46.5 | 7 |
85 | 15 | 0 | 150 | 46.5 | 7 |
80 | 20 | 0 | 150 | 46.5 | 7 |
75 | 25 | 0 | 150 | 46.5 | 7 |
95 | 0 | 5 | 150 | 46.5 | 7 |
90 | 0 | 10 | 150 | 46.5 | 7 |
85 | 0 | 15 | 150 | 46.5 | 7 |
80 | 0 | 20 | 150 | 46.5 | 7 |
75 | 0 | 25 | 150 | 46.5 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; He, X.; Shu, C.; Wei, Z.; Wang, H. Research on the Working Performance and the Corresponding Mechanical Strength of Polyaluminum Sulfate Early Strength Alkali-Free Liquid Accelerator Matrix Cement. Materials 2022, 15, 8086. https://doi.org/10.3390/ma15228086
Wang L, He X, Shu C, Wei Z, Wang H. Research on the Working Performance and the Corresponding Mechanical Strength of Polyaluminum Sulfate Early Strength Alkali-Free Liquid Accelerator Matrix Cement. Materials. 2022; 15(22):8086. https://doi.org/10.3390/ma15228086
Chicago/Turabian StyleWang, Lin, Xinxin He, Chunxue Shu, Zicheng Wei, and Hui Wang. 2022. "Research on the Working Performance and the Corresponding Mechanical Strength of Polyaluminum Sulfate Early Strength Alkali-Free Liquid Accelerator Matrix Cement" Materials 15, no. 22: 8086. https://doi.org/10.3390/ma15228086