Spin-Induced Switching of Electronic State Populations in Transition Metal Polyphthalocyanines
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H.T.; Van Wees, B.J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007, 448, 571–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dlubak, B.; Martin, M.B.; Deranlot, C.; Servet, B.; Xavier, S.; Mattana, R.; Sprinkle, M.; Berger, C.; De Heer, W.A.; Petroff, F.; et al. Highly efficient spin transport in epitaxial graphene on SiC. Nat. Phys. 2012, 8, 557–561. [Google Scholar] [CrossRef]
- Guimarães, M.H.; Zomer, P.J.; Ingla-Aynés, J.; Brant, J.C.; Tombros, N.; van Wees, B.J. Controlling spin relaxation in hexagonal BN-encapsulated graphene with a transverse electric field. Phys. Rev. Lett. 2014, 113, 086602. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Kawakami, R.K.; Gmitra, M.; Fabian, J. Graphene spintronics. Nat. Nanotechnol. 2014, 9, 794–807. [Google Scholar] [CrossRef] [Green Version]
- Pesin, D.; MacDonald, A.H. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 2012, 11, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Zang, Z.; Zeng, X.; Wang, M.; Hu, W.; Liu, C.; Tang, X. Tunable photoluminescence of water-soluble AgInZnS–graphene oxide (GO) nanocomposites and their application in-vivo bioimaging. Sens. Actuators B Chem. 2017, 252, 1179–1186. [Google Scholar] [CrossRef]
- Mei, L.; Wang, H.G.; Duan, Q. Conjugated Cobalt (II) Polyphthalocyanine Doped with Carbon Nanotubes as Available Electrode for Supercapacitors. J. Phys. Conf. Ser. 2020, 1605, 012177. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, Q. Magnetism of phthalocyanine-based organometallic single porous sheet. J. Am. Chem. Soc. 2011, 133, 15113–15119. [Google Scholar] [CrossRef]
- Song, Y.; Wang, C.K.; Chen, G.; Zhang, G.P. A first-principles study of phthalocyanine-based multifunctional spintronic molecular devices. Phys. Chem. Chem. Phys. 2021, 23, 18760–18769. [Google Scholar] [CrossRef]
- Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G.J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66–69. [Google Scholar] [CrossRef]
- Shen, X.; Sun, L.; Benassi, E.; Shen, Z.; Zhao, X.; Sanvito, S.; Hou, S. Spin filter effect of manganese phthalocyanine contacted with single-walled carbon nanotube electrodes. J. Chem. Phys. 2010, 132, 054703. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ballabio, M.; Wang, M.; Lin, H.H.; Biswal, B.P.; Han, X.; Paasch, S.; Brunner, E.; Liu, P.; Chen, M.; et al. Unveiling electronic properties in metal–phthalocyanine-based pyrazine-linked conjugated two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 16810–16816. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xu, K.; Lei, S.; Su, H.; Yang, S.; Li, Q.; Yang, J. Iron-phthalocyanine molecular junction with high spin filter efficiency and negative differential resistance. J. Chem. Phys. 2012, 136, 064707. [Google Scholar] [CrossRef] [PubMed]
- McCreery, R.L.; Bergren, A.J. Progress with molecular electronic junctions: Meeting experimental challenges in design and fabrication. Adv. Mater. 2009, 21, 4303–4322. [Google Scholar] [CrossRef]
- Li, B.; Li, Z.; Yang, J.; Hou, J. STM studies of single molecules: Molecular orbital aspects. Chem. Commun. 2011, 47, 2747–2762. [Google Scholar] [CrossRef]
- Guo, X.; Liu, J.; Cao, L.; Liang, Q.; Lei, S. Nonvolatile memory device based on copper polyphthalocyanine thin films. ACS Omega 2019, 4, 10419–10423. [Google Scholar] [CrossRef]
- Bechara, R.; Petersen, J.; Gernigon, V.; Lévêque, P.; Heiser, T.; Toniazzo, V.; Ruch, D.; Michel, M. PEDOT: PSS-free organic solar cells using tetrasulfonic copper phthalocyanine as buffer layer. Sol. Energy Mater. Sol. Cells 2012, 98, 482–485. [Google Scholar] [CrossRef]
- Luong, T.T.T.; Chen, Z.; Zhu, H. Flexible solar cells based on copper phthalocyanine and buckminsterfullerene. Sol. Energy Mater. Sol. Cells 2010, 94, 1059–1063. [Google Scholar] [CrossRef]
- Yu, X.; Wang, P.; Li, X.; Yang, D. Thin Czochralski silicon solar cells based on diamond wire sawing technology. Sol. Energy Mater. Sol. Cells 2012, 98, 337–342. [Google Scholar] [CrossRef]
- Cheng, F.; Fang, G.; Fan, X.; Liu, N.; Sun, N.; Qin, P.; Zheng, Q.; Wan, J.; Zhao, X. Enhancing the short-circuit current and efficiency of organic solar cells using MoO3 and CuPc as buffer layers. Sol. Energy Mater. Sol. Cells 2011, 95, 2914–2919. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef] [Green Version]
- Smidstrup, S.; Markussen, T.; Vancraeyveld, P.; Wellendorff, J.; Schneider, J.; Gunst, T.; Verstichel, B.; Stradi, D.; Khomyakov, P.A.; Vej-Hansen, U.G.; et al. QuantumATK: An integrated platform of electronic and atomic-scale modelling tools. J. Phys. Condens. Matter 2019, 32, 015901. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef] [Green Version]
- Tran, F.; Blaha, P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 2009, 102, 226401. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Ruzsinszky, A.; Perdew, J.P. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 2015, 115, 036402. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.; Wang, J. Giant magnetoresistance and perfect spin filter effects in manganese phthalocyanine based molecular junctions. Nanoscale 2017, 9, 12684–12689. [Google Scholar] [CrossRef]
- Mahan, G.; Sofo, J. The best thermoelectric. Proc. Natl. Acad. Sci. USA 1996, 93, 7436–7439. [Google Scholar] [CrossRef] [Green Version]
- Liao, M.S.; Scheiner, S. Electronic structure and bonding in metal phthalocyanines, metal= Fe, Co, Ni, Cu, Zn, Mg. J. Chem. Phys. 2001, 114, 9780–9791. [Google Scholar] [CrossRef] [Green Version]
- Tsukahara, N.; Noto, K.i.; Ohara, M.; Shiraki, S.; Takagi, N.; Takata, Y.; Miyawaki, J.; Taguchi, M.; Chainani, A.; Shin, S.; et al. Adsorption-induced switching of magnetic anisotropy in a single iron (II) phthalocyanine molecule on an oxidized Cu (110) surface. Phys. Rev. Lett. 2009, 102, 167203. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jagga, D.; Korepanov, V.I.; Sedlovets, D.M.; Useinov, A. Spin-Induced Switching of Electronic State Populations in Transition Metal Polyphthalocyanines. Materials 2022, 15, 8098. https://doi.org/10.3390/ma15228098
Jagga D, Korepanov VI, Sedlovets DM, Useinov A. Spin-Induced Switching of Electronic State Populations in Transition Metal Polyphthalocyanines. Materials. 2022; 15(22):8098. https://doi.org/10.3390/ma15228098
Chicago/Turabian StyleJagga, Deepali, Vitaly I. Korepanov, Daria M. Sedlovets, and Artur Useinov. 2022. "Spin-Induced Switching of Electronic State Populations in Transition Metal Polyphthalocyanines" Materials 15, no. 22: 8098. https://doi.org/10.3390/ma15228098
APA StyleJagga, D., Korepanov, V. I., Sedlovets, D. M., & Useinov, A. (2022). Spin-Induced Switching of Electronic State Populations in Transition Metal Polyphthalocyanines. Materials, 15(22), 8098. https://doi.org/10.3390/ma15228098