Study on Electromagnetic Performance of La0.5Sr0.5CoO3/Al2O3 Ceramic with Metal Periodic Structure at X-Band
Abstract
:1. Introduction
2. Design and Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anuradha, S.; Balakrishnan, J. Resonance Based Discrimination Of Stealth Targets Coated With Radar Absorbing Material (RAM). Prog. Electromagn. Res. M 2021, 99, 69–79. [Google Scholar] [CrossRef]
- Haystead, J. Passive Radar Technology—A Response to Stealth? J. Electron. 2019, 42, 24–30. [Google Scholar]
- Baek, S.M.; Lee, W.J. Design method for radar absorbing structures using reliability-based design optimization of the composite material properties. Compos. Struct. 2021, 262, 113559. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.; Yang, H.; Wang, P.; Chen, M.; Lei, H.; Fang, D. Broadband radar absorbing composites: Spatial scale effect and environmental adaptability. Compos. Sci. Technol. 2020, 197. [Google Scholar] [CrossRef]
- Huang, H.; Wang, W.; Hua, M.; Kuang, J.; Ma, Y.; Guo, Z.; Xie, W. Broadband radar absorbing characteristic based on periodic hollow truncated cone structure. Phys. B Condens. Matter 2020, 595, 412368. [Google Scholar] [CrossRef]
- Yunasfi, Y.; Mashadi, M.; Mulyawan, A.; Adi, W.A. Synthesis of NiLaxFe(2-x)O4System as Microwave Absorber Materials by Milling Technique. J. Electron. Mater. 2020, 49, 7272–7278. [Google Scholar] [CrossRef]
- Jeong, G.-W.; Noh, Y.-H.; Choi, W.-H.; Shin, J.-H.; Kweon, J.-H.; Yook, J.-G.; Nam, Y.-W. Electromagnetic-mechanical repair patch of radar-absorbing structure with electroless nickel–plated glass fabric damaged by lightning strike. J. Compos. Mater. 2020, 55, 989–1002. [Google Scholar] [CrossRef]
- Rumiyanti, L.; Wandira, I.; Adi, W.A.; Junaidi; Sembiring, S. Structure analysis of electromagnetic waves absorbing material a lanthanum manganite system of (La0.8Ba0.2)(Mn(1-x)/2ZnxFe(1-x)/2)O3. J. Phys. Conf. Ser. 2021, 1751, 012069. [Google Scholar] [CrossRef]
- Guo, Y.; Sun, Q.; Song, K.; Ding, J.; Shi, C.; He, F. Rational design of FeCo imbedded 3D porous carbon microspheres as broadband and lightweight microwave absorbers. J. Mater. Sci. 2020, 56, 2212–2225. [Google Scholar] [CrossRef]
- Zhang, M.; Han, C.; Cao, W.-Q.; Cao, M.-S.; Yang, H.-J.; Yuan, J. A Nano-Micro Engineering Nanofiber for Electromagnetic Absorber, Green Shielding and Sensor. Nano-Micro Lett. 2020, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-P.; Zhu, L.-Q.; Gu, J.; Liu, H.-C. Microwave absorption properties of fabric coated absorbing material using modified carbonyl iron power. Compos. Part B Eng. 2011, 42, 626–630. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, B.; Gao, W.; Xu, Y.; Wang, X.; Wu, Q. An effective methodology to design scale model for magnetic absorbing coatings based on ORL. Results Phys. 2017, 7, 1698–1704. [Google Scholar] [CrossRef]
- Qing, Y.; Wen, Q.; Luo, F.; Zhou, W. Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band. J. Mater. Chem. C 2016, 4, 4853–4862. [Google Scholar]
- Zhou, J.H.; Huo, L.X.; Li, W.W.; You, B.Q.; Li, Y.L.; Li, H.X. A Magnetic-Controlled Detection System for Radar Absorbing Coatings. Adv. Mater. Res. 2013, 718-720, 393–398. [Google Scholar] [CrossRef]
- Chen, F.; Luo, H.; Cheng, Y.; Liu, J.; Wang, X.; Gong, R. Fe/Fe3O4@N-Doped Carbon Hexagonal Plates Decorated with Ag Nanoparticles for Microwave Absorption. ACS Appl. Nano Mater. 2019, 2, 7266–7278. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, F.; Zhou, W.; Zhu, D. Dielectric and electromagnetic wave absorbing properties of TiC/epoxy composites in the GHz range. Ceram. Int. 2014, 40, 10749–10754. [Google Scholar] [CrossRef]
- Jia, H.; Zhou, W.; Nan, H.; Dong, J.; Qing, Y.; Luo, F.; Zhu, D. Enhanced high temperature dielectric polarization of barium titanate/magnesium aluminum spinel composites and their potential in microwave absorption–ScienceDirect. J. Eur. Ceram. Soc. 2020, 40, 728–734. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, Y.; Li, W.; Li, J.; Yu, H.; Liu, L.; Wu, G.; Yang, T.; Luo, L. Preparation of boron nitride nanosheet-coated carbon fibres and their enhanced antioxidant and microwave-absorbing properties. RSC Adv. 2018, 8, 17944–17949. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.J.; Zha, B.L.; Wang, H.G. Dielectric and Infrared Properties of Plasma Sprayed Nano β-SiC/Al2O3 Agglomerate Composite Absorbing Coatings. Adv. Mater. Res. 2013, 634–638, 1901–1905. [Google Scholar] [CrossRef]
- Wu, G.; He, Y.; Zhan, H.; Shi, Q.; Wang, J. A novel Fe3O4/carbon nanotube composite film with a cratered surface structure for effective microwave absorption. J. Mater. Sci. Mater. Electron. 2020, 31, 11508–11519. [Google Scholar] [CrossRef]
- Yang, Z.; Luo, F.; Zhou, W.; Jia, H.; Zhu, D. Design of a thin and broadband microwave absorber using double layer frequency selective surface. J. Alloys Compd. 2017, 699, 534–539. [Google Scholar] [CrossRef]
- Yang, Z.; Ren, W.; Zhu, L.; Qing, Y.; Huang, Z.; Luo, F.; Zhou, W. Electromagnetic-wave absorption property of Cr2O3–TiO2 coating with frequency selective surface. J. Alloys Compd. 2019, 803, 111–117. [Google Scholar] [CrossRef]
- Qing, Y.; Yang, Z.; Wen, Q.; Luo, F. CaCu3Ti4O12 particles and MWCNT-filled microwave absorber with improved microwave absorption by FSS incorporation. Appl. Phys. A 2016, 122, 640. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, X.-Z.; Zhou, D.; Du, Z.; Huang, X. A Dual-Layer Radar Absorbing Material With Fully Embedded Square-Holes Frequency Selective Surface. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3200–3203. [Google Scholar] [CrossRef]
- Gill, N.; Puthucheri, S.; Singh, D.; Agarwala, V. Critical analysis of frequency selective surfaces embedded composite microwave absorber for frequency range 2–8 GHz. J. Mater. Sci. Mater. Electron. 2016, 28, 1259–1270. [Google Scholar] [CrossRef]
- Liao, Z.; Gong, R.; Nie, Y.; Wang, T.; Wang, X. Absorption enhancement of fractal frequency selective surface absorbers by using microwave absorbing material based substrates. Photon. Nanostruct. Fundam. Appl. 2011, 9, 287–294. [Google Scholar] [CrossRef]
- McGuigan, N.; Conway, G.; Cahill, R.; Zelenchuk, D.; Zabri, S. Experimental characterisation of near field backscatter from thin resistively loaded FSS absorbers. Electron. Lett. 2017, 53, 1561–1562. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-S. High absorption terahertz-wave absorber consisting of dual-C metamaterial structure. Microw. Opt. Technol. Lett. 2013, 55, 1185–1189. [Google Scholar]
- Khurram, A.A.; Rakha, S.A.; Ali, N.; Asim, M.T.; Guorui, Z.; Munir, A. Microwave Absorbing Properties of Lightweight Nanocomposite/Honeycomb Sandwich Structures. J. Nanotechnol. Eng. Med. 2015, 6, 011006. [Google Scholar] [CrossRef]
- Ren, W.; Nie, Y.; Xiong, X.; Zhou, Y.; Gong, R. Enhancing and broadening absorption properties of frequency selective surfaces absorbers using FeCoB-based thin film. J. Appl. Phys 2012, 111 Pt 3, 07E703. [Google Scholar] [CrossRef]
- Zheng, Y.; Jia, Y.; Li, H.; Wu, Z.; Dong, X. Enhanced piezo-electro-chemical coupling of BaTiO3/g-C3N4 nanocomposite for vibration-catalysis. J. Mater. Sci. 2020, 55, 14787–14797. [Google Scholar] [CrossRef]
- Xu, X.; Xiao, L.; Wu, Z.; Jia, Y.; Ye, X.; Wang, F.; Yuan, B.; Yu, Y.; Huang, H.; Zou, G. Harvesting vibration energy to piezo-catalytically generate hydrogen through Bi2WO6 layered-perovskite. Nano Energy 2020, 78, 105351. [Google Scholar] [CrossRef]
- Zhao, H.-B.; Fu, Z.-B.; Chen, H.-B.; Zhong, M.-L.; Wang, C.-Y. Excellent Electromagnetic Absorption Capability of Ni/Carbon Based Conductive and Magnetic Foams Synthesized via a Green One Pot Route. ACS Appl. Mater. Interfaces 2016, 8, 1468–1477. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.T.; Cheng, H.F. Design, Preparation and Microwave-Absorbing Properties of Sandwich-Structure Radar-Absorbing Materials Reinforced by Glass and SiC Fibres. Mater. Sci. Forum 2014, 788, 573–579. [Google Scholar] [CrossRef]
- Yang, L.; Liu, H.; Zu, M. Enhanced microwave-absorbing property of precursor infiltration and pyrolysis derived SiCf/SiC composites at X band: Role of carbon-rich interphase. J. Am. Ceram. Soc. 2018, 101, 3402–3413. [Google Scholar] [CrossRef]
- Qing, Y.; Nan, H.; Jia, H.; Min, D.; Zhou, W.; Luo, F. Aligned Fe microfiber reinforced epoxy composites with tunable electromagnetic properties and improved microwave absorption. J. Mater. Sci. 2018, 54, 4671–4679. [Google Scholar] [CrossRef]
- Liu, Q.-W.; Wang, L.-Z.; Zhong, P.-Z.; Sun, W.-X.; Ren, D.; Haeri, H. Research on a New Method of Windshield Microwave Heating. Adv. Mater. Sci. Eng. Int. Conf. 2016, 139–144. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Gao, L.; Ren, W.; Zhang, R.; Chen, Y.; Zhou, Q.; Sun, K.; Jie, Z.; Jia, Y. Study on Electromagnetic Performance of La0.5Sr0.5CoO3/Al2O3 Ceramic with Metal Periodic Structure at X-Band. Materials 2022, 15, 8147. https://doi.org/10.3390/ma15228147
Yang Z, Gao L, Ren W, Zhang R, Chen Y, Zhou Q, Sun K, Jie Z, Jia Y. Study on Electromagnetic Performance of La0.5Sr0.5CoO3/Al2O3 Ceramic with Metal Periodic Structure at X-Band. Materials. 2022; 15(22):8147. https://doi.org/10.3390/ma15228147
Chicago/Turabian StyleYang, Zhaoning, Lu Gao, Wei Ren, Ruiduan Zhang, Yangyang Chen, Qian Zhou, Kai Sun, Ziqi Jie, and Yanmin Jia. 2022. "Study on Electromagnetic Performance of La0.5Sr0.5CoO3/Al2O3 Ceramic with Metal Periodic Structure at X-Band" Materials 15, no. 22: 8147. https://doi.org/10.3390/ma15228147
APA StyleYang, Z., Gao, L., Ren, W., Zhang, R., Chen, Y., Zhou, Q., Sun, K., Jie, Z., & Jia, Y. (2022). Study on Electromagnetic Performance of La0.5Sr0.5CoO3/Al2O3 Ceramic with Metal Periodic Structure at X-Band. Materials, 15(22), 8147. https://doi.org/10.3390/ma15228147