Evaluating Cement Treated Aggregate Base Containing Steel Slag: Mechanical Properties, Volume Stability and Environmental Impacts
Abstract
:1. Introduction
2. Materials and Specimen
2.1. Materials
2.2. Mixture Design and Specimen Preparation
3. Methodology
3.1. Mechanical Test
3.2. Volume Stability Test
3.3. Heavy Metal Leaching Test
3.4. Economic Evaluation and Carbon Footprint Simulation
4. Results and Discussions
4.1. Mechanical Properties
4.2. Volume Stability
4.2.1. Volume Expansion of Steel Slag
4.2.2. Shrinkage of Steel Slag Mixture
4.3. Heavy Metal Leaching
4.4. Economic and Carbon Footprint Analysis
5. Conclusions
- (1)
- Compared to traditional mineral aggregate (i.e., limestone), steel slag aggregate has equal or superior engineering properties, including density, abrasion resistance and crushing resistance. Due to higher water absorption and larger gravity, the OMC and MDD increase proportionally as more natural aggregates are replaced with steel slag.
- (2)
- Mechanical properties including strength and stiffness are significantly improved by steel slag within 50% replacement due to the increased hydration products and interlocked aggregate structure. However, the porosity and water absorption rate have greater negative effect on strength when steel slag replacement further increases.
- (3)
- Appropriate treatment with CH3COOH or addition of silica fume can relieve the volume expansion of steel slag. Nevertheless, excessive silica fume may be detrimental to the aggregate structure and should be kept within a reasonable content: 3–4.5%.
- (4)
- Smaller particle size shows higher risk of heavy metal precipitation, and the salty water environment in coastal area adds to it. Large particle size (>4.75 mm) and higher cement content are recommended to reduce heavy metal leaching threat.
- (5)
- Steel slag mixture has sound economic gains and potential environmental benefits compared to limestone mixture. However, the transport emission of steel slag should be accounted for to determine an environmental haul distance of steel slag.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Bureau of Statistics of China. Crude Steel Output. 2021. Available online: http://data.stats.gov.cn (accessed on 25 August 2022).
- Mesci, B.; Çoruh, S.; Ergun, O.N. Use of Selected Industrial Waste Materials in Concrete Mixture. Environ. Prog. Sustain. Energy 2011, 30, 368–376. [Google Scholar]
- Ahmad, J.; Zhou, Z.; Martínez-García, R.; Vatin, N.I.; De-Prado-Gil, J.; El-Shorbagy, M.A. Waste Foundry Sand in Concrete Production Instead of Natural River Sand: A Review. Materials 2022, 15, 2365. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, J.; Martínez-García, R.; De-Prado-Gil, J.; Irshad, K.; El-Shorbagy, M.A.; Fediuk, R.; Vatin, N.I. Concrete with Partial Substitution of Waste Glass and Recycled Concrete Aggregate. Materials 2022, 15, 430. [Google Scholar] [CrossRef] [PubMed]
- Kongar-Syuryun, C.; Tyulyaeva, Y.; Khairutdinov, A.M.; Kowalik, T. Industrial waste in concrete mixtures for construction of underground structures and minerals extraction. IOP Conf. Ser. Mater. Sci. Eng. 2020, 869, 032004. [Google Scholar] [CrossRef]
- Taskin, A.; Fediuk, R.; Grebenyuk, I.; Elkin, O.; Kholodov, A. Effective Cement Binders on Fly and Slag Waste from Heat Power Industry of the Primorsky Krai, Russian Federation. Int. J. Sci. Technol. Res. 2020, 9, 3509–3512. [Google Scholar]
- Guo, J.; Bao, Y.; Wang, M. Steel slag in China: Treatment, recycling, and management. Waste Manag. 2018, 78, 318–330. [Google Scholar] [CrossRef]
- He, L.; Zhan, C.; Lu, S.; Gao, J.; Xie, J.; Ling, T. Application status of steel slag asphalt mixture. J. Traffic Transp. Eng. 2020, 20, 15–33. [Google Scholar]
- Skaf, M.; Manso, J.; Aragon, A.; Fuente-Alonso, J.A.; Ortega-López, V. EAF slag in asphalt mixes: A brief review of its possible re-use. Resour. Conserv. Recycl. 2017, 120, 176–185. [Google Scholar] [CrossRef]
- Martins, A.; Carvalho, J.; Costa, J. Steel slags in cement-based composites: An ultimate review on characterization, applications and performance. Constr. Build. Mater. 2021, 291, 123265. [Google Scholar] [CrossRef]
- Passeto, M.; Baliello, A.; Giacomello, G.; Pasquini, E. Sustainable solutions for road pavements: A multi-scale characterization of warm mix asphalts containing steel slags. J. Clean. Prod. 2017, 166, 835–843. [Google Scholar] [CrossRef]
- Wen, H.; Wu, S.; Bhusal, S. Performance evaluation of asphalt mixes containing steel slag aggregates as a measure to resist studded tire wear. J. Mater. Civ. Eng. 2016, 28, 1–7. [Google Scholar] [CrossRef]
- Chen, J.; Wei, S. Engineering properties and performance of asphalt mixtures incorporating steel slag. Construct. Build. Mater. 2016, 128, 148–153. [Google Scholar] [CrossRef]
- Passeto, M.; Baliello, A.; Giacomello, G.; Pasquini, E. Rheological characterization of warm modified asphalt mastics containing electric arc furnace steel slag. Adv. Mater. Sci. Eng. 2016, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Shen, A.; Yu, M.; Guo, Y.; Cui, T.; Liu, B. Fatigue properties and improvement mechanism of steel slag asphalt mixture. J. Build. Mater. 2018, 21, 327–334. [Google Scholar]
- Cui, P.; Wu, S.; Xiao, Y.; Yang, C.; Wang, F. Enhancement mechanism of skid resistance in preventive maintenance of asphalt pavement by steel slag based on micro-surfacing. Constr. Build. Mater. 2020, 239, 117870. [Google Scholar] [CrossRef]
- Gao, J.; Sha, A.; Wang, Z.; Tong, Z.; Liu, Z. Utilization of steel slag as aggregates in asphalt mixtures for microwave deicing. J. Clean. Prod. 2017, 152, 429–442. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, S.; Liu, Q.; Zeng, W.; Chen, Z.; Ye, Q.; Pan, P. Self-healing performance of asphalt mixtures through heating fibers or aggregates. Construct. Build. Mater. 2017, 150, 673–680. [Google Scholar] [CrossRef]
- Anastasiou, E.K.; Liapis, A.; Papayianni, I. Comparative life cycle assessment of concrete road pavements using industrial by-products as alternative materials. Resour. Conserv. Recycl. 2015, 101, 1–8. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Najm, H.; Venkiteela, G.; Hencken, J. Evaluating engineering properties and environmental impact of pervious concrete with fly ash and slag. J. Clean. Prod. 2019, 237, 117714. [Google Scholar] [CrossRef]
- Liu, J.; Yu, B.; Wang, Q. Application of steel slag in cement treated aggregate base coarse. J. Clean. Prod. 2020, 269, 121733. [Google Scholar] [CrossRef]
- Guimaraes, A.; Costa, K.; Reis, M.; Santana, C.S.A.; Castro, C.D. Study of controlled leaching process of steel slag in soxhlet extractor aiming employment in pavements. Transp. Geotech. 2021, 27, 100485. [Google Scholar] [CrossRef]
- Swathi, M.; Andiyappan, T.; Guduru, G.; Reddy, M.A.; Kuna, K.K. Design of asphalt mixes with steel slag aggregates using the Bailey method of gradation selection. Constr. Build. Mater. 2021, 279, 122426. [Google Scholar] [CrossRef]
- Xu, F.; Chen, Z.; Zhu, J.; Zhou, M.; Shen, W.; Chen, J. Research on the volume stability performance of steel slag road base materials. Concrete 2012, 9, 59–62. [Google Scholar]
- Department of Transportation. Test Methods Of Materials Stabilized With Inorganic Binders For Highway Engineering, JTG E51-2009; China Communications Press: Beijing, China, 2009.
- Manjunatha, M.; Preethi, S.; Malingaraya, H.G.; Mounika, H.; Niveditha, K. Life cycle assessment (LCA) of concrete prepared with sustainable cement-based materials. Mater. Today Proc. 2021, 47, 3637–3644. [Google Scholar] [CrossRef]
- O’Born, R. Life cycle assessment of large scale timber bridges: A case study from the world’s longest timber bridge design in Norway. Transp. Res. Part D Transp. Environ. 2019, 59, 301–312. [Google Scholar] [CrossRef]
- Goedkoop, M.; Oele, M.; Vieira, M.; Leijting, J.; Ponsioen, T.; Meijer, E. SimaPro Tutorial; Creative Commons: San Francisco, CA, USA, 2016. [Google Scholar]
- Department of Transportation. Specification For Design Of Highway Asphalt Pavement, Jtg D50-2017; China Communications Press: Beijing, China, 2017.
- Liu, L.; Zhou, A.; Deng, Y.; Cui, Y.; Yu, Z.; Yu, C. Strength performance of cement/slag-based stabilized soft clays. Construct. Build. Mater. 2019, 211, 909–918. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Gao, Z. Use of steel slag as a granular material: Volume expansion prediction and usability criteria. J. Hazard. Mater. 2010, 184, 555–560. [Google Scholar] [CrossRef]
- Ferreira, V.J.; Saez-De-Guinoa Vilaplana, A.; García-Armingol, T.; Aranda-Usón, A.; Lausín-González, C.; López-Sabirón, A.M.; Ferreira, G. Evaluation of the steel slag incorporation as coarse aggregate for road construction: Technical requirements and environmental impact assessment. J. Clean. Prod. 2016, 130, 175–186. [Google Scholar] [CrossRef]
Index | Steel Slag | Limestone | |||
---|---|---|---|---|---|
Aging 0 Month | Aging 6 Months | Aging 12 Months | |||
Apparent density (g/cm3) | 4.75~9.5 mm | 3.551 | 3.482 | 3.374 | 2.661 |
9.5~19 mm | 3.556 | 3.496 | 3.387 | 2.641 | |
19~26.5 mm | 3.555 | 3.475 | 3.397 | 2.667 | |
Crushing value (%) | 17.4 | 18.4 | 19.2 | 25.4 | |
Abrasion (%) | 12 | 12.5 | 13 | 22.7 | |
Elongated or flaky particle content (%) | 4.6 | 3.9 | 3.2 | 5.3 | |
Water absorption (%) | 0.5 h | 1.10 | 1.08 | 1.01 | 0.29 |
1 h | 2.25 | 2.22 | 2.11 | 0.61 | |
2 h | 2.45 | 2.41 | 2.30 | 0.64 | |
4 h | 2.54 | 2.48 | 2.33 | 0.71 | |
8 h | 2.66 | 2.60 | 2.41 | 0.72 | |
12 h | 2.76 | 2.68 | 2.44 | 0.80 | |
24 h | 2.96 | 2.87 | 2.53 | 0.92 | |
48 h | 3.08 | 2.95 | 2.69 | 1.02 |
Oxide Type | CaO | Fe2O3 | SiO2 | MgO | Mn | Al2O3 | P2O5 | f-CaO | f-MgO | Others |
---|---|---|---|---|---|---|---|---|---|---|
Aging 0 month | 48.26 | 19.01 | 16.41 | 6.6 | 3.74 | 3.73 | 1.23 | 3.42 | 0.037 | 1.02 |
Aging 6 month | 44.5 | 20.62 | 17.86 | 6.43 | 3.56 | 3.54 | 1.65 | 2.43 | 0.034 | 1.84 |
Aging 12 month | 40.74 | 22.23 | 19.31 | 6.26 | 3.38 | 3.35 | 2.07 | 1.44 | 0.028 | 2.66 |
Combinations | OMC (%) | MDD (g/cm3) |
---|---|---|
0% steel slag + 3% cement | 3.98 | 2.237 |
0% steel slag + 4% cement | 4.10 | 2.325 |
0% steel slag + 5% cement | 4.32 | 2.414 |
0% steel slag + 6% cement | 4.87 | 2.498 |
30% steel slag + 3% cement | 4.11 | 2.344 |
30% steel slag + 4% cement | 4.31 | 2.409 |
30% steel slag + 5% cement | 4.55 | 2.450 |
30% steel slag + 6% cement | 5.17 | 2.542 |
50% steel slag + 3% cement | 5.01 | 2.503 |
50% steel slag + 4% cement | 5.37 | 2.544 |
50% steel slag + 5% cement | 5.62 | 2.579 |
50% steel slag + 6% cement | 6.27 | 2.599 |
75% steel slag + 3% cement | 6.97 | 2.606 |
75% steel slag + 4% cement | 7.21 | 2.620 |
75% steel slag + 5% cement | 7.38 | 2.641 |
75% steel slag + 6% cement | 8.11 | 2.653 |
Materials | Electricity (MJ/kg) | Diesel (MJ/kg) |
---|---|---|
Cement | 0.36 | - |
Limestone | 0.00828 | 0.000542 |
Steel slag | - | - |
Time | <0.075 | 0.075~0.6 | 0.6~2.36 | 2.36~4.75 | 4.75~9.5 | 9.5~19 | 19~26.5 |
---|---|---|---|---|---|---|---|
4 h | 7.945 | 6.214 | 4.997 | 4.103 | 3.412 | 2.845 | 2.217 |
8 h | 8.213 | 6.945 | 5.275 | 4.833 | 3.789 | 3.170 | 2.454 |
12 h | 8.517 | 6.843 | 5.678 | 4.791 | 3.615 | 2.576 | 2.526 |
16 h | 8.342 | 6.732 | 5.161 | 4.894 | 3.849 | 2.755 | 2.498 |
20 h | 8.401 | 6.648 | 5.501 | 4.797 | 3.380 | 3.007 | 2.505 |
24 h | 8.443 | 6.713 | 5.329 | 4.901 | 3.667 | 2.571 | 2.536 |
Time | <0.075 | 0.075~0.6 | 0.6~2.36 | 2.36~4.75 | 4.75~9.5 | 9.5~19 | 19~26.5 |
---|---|---|---|---|---|---|---|
4 h | 5.562 | 4.715 | 4.210 | 3.732 | 3.489 | 2.241 | 1.985 |
8 h | 5.746 | 5.213 | 4.874 | 4.125 | 3.889 | 2.515 | 2.221 |
12 h | 6.245 | 5.632 | 5.187 | 4.402 | 3.914 | 2.626 | 2.314 |
16 h | 6.454 | 5.621 | 5.234 | 4.698 | 3.951 | 2.648 | 2.369 |
20 h | 6.354 | 5.598 | 5.146 | 4.526 | 3.879 | 2.545 | 2.254 |
24 h | 6.21 | 5.634 | 5.098 | 4.395 | 3.881 | 2.556 | 2.246 |
Item | Unit/(¥/t) * | Cement-Stabilized Limestone | Cement-Stabilized Limestone + 50% Steel Slag | Cement-Stabilized Limestone + 50% Steel Slag + 3% Silica Fume | Cement-Stabilized Limestone + 30% Steel Slag | Cement-Stabilized Limestone + 30% Steel slag + 3% Silica Fume | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Amount/t | Cost/¥ | Amount/t | Cost/¥ | Amount/t | Cost/¥ | Amount/t | Cost/¥ | |||||
Materials | Cement | 500 | 595 | 297,600 | 644 | 321792 | 644 | 321,792 | 609 | 304,512 | 609 | 304,512 |
Limestone | 100 | 14,880 | 1,488,000 | 7388 | 738,808 | 7388 | 738,808 | 10,118 | 1,011,828 | 10,118 | 1,011,828 | |
Steel slag | 10 | - | - | 8702 | 87,015 | 8702 | 87,015 | 5107 | 51,073 | 5107 | 51,073 | |
Water | 4 | 634 | 2221 | 899 | 3145 | 899 | 3145 | 682 | 2389 | 682 | 2389 | |
Silica fume | 700 | - | - | - | - | 261 | 182,732 | - | - | 153 | 107,254 | |
Transportation | tkm | 0.35 | 212,486 | 412,491 | 421,628 | 324,675 | 330,038 | |||||
Total | - | 2,000,307 | 1,563,252 | 1,755,120 | 1,694,477 | 1,807,093 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Yang, X.; Wang, S.; Liu, Z.; Liu, L.; Xu, B. Evaluating Cement Treated Aggregate Base Containing Steel Slag: Mechanical Properties, Volume Stability and Environmental Impacts. Materials 2022, 15, 8277. https://doi.org/10.3390/ma15238277
Huang Y, Yang X, Wang S, Liu Z, Liu L, Xu B. Evaluating Cement Treated Aggregate Base Containing Steel Slag: Mechanical Properties, Volume Stability and Environmental Impacts. Materials. 2022; 15(23):8277. https://doi.org/10.3390/ma15238277
Chicago/Turabian StyleHuang, You, Xin Yang, Shuai Wang, Zhaohui Liu, Li Liu, and Bo Xu. 2022. "Evaluating Cement Treated Aggregate Base Containing Steel Slag: Mechanical Properties, Volume Stability and Environmental Impacts" Materials 15, no. 23: 8277. https://doi.org/10.3390/ma15238277
APA StyleHuang, Y., Yang, X., Wang, S., Liu, Z., Liu, L., & Xu, B. (2022). Evaluating Cement Treated Aggregate Base Containing Steel Slag: Mechanical Properties, Volume Stability and Environmental Impacts. Materials, 15(23), 8277. https://doi.org/10.3390/ma15238277