Applications of Novel Biodegradable Polymeric Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sikorska, W.; Musioł, M.; Zawidlak-Węgrzyńska, B.; Rydz, J. Compostable Polymeric Ecomaterials: Environment-Friendly Waste Management Alternative to Landfills. In Handbook of Ecomaterials; Martínez, L.M.T., Kharissova, O.V., Kharisov, B.I., Eds.; Springer International Publishing AG: Cham, Switzerland, 2019; pp. 2733–2764. [Google Scholar]
- Rudnik, E.; Briassoulis, D. Degradation behaviour of poly(lactic acid) films and fibres in soil under mediterranean field conditions and laboratory simulations testing. Ind. Crops Prod. 2011, 33, 648–658. [Google Scholar] [CrossRef]
- Puchalski, M.; Siwek, P.; Panayotov, N.; Berova, M.; Kowalska, S.; Krucińska, I. Influence of various climatic conditions on the structural changes of semicrystalline pla spun-bonded mulching nonwovens during outdoor composting. Polymers 2019, 11, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giełdowska, M.; Puchalski, M.; Szparaga, G.; Krucińska, I. Investigation of the influence of PLA molecular and supramolecular structure on the kinetics of thermal-supported hydrolytic degradation of wet spinning fibres. Materials 2020, 13, 2111. [Google Scholar] [CrossRef] [PubMed]
- Rydz, J.; Musiol, M.; Zawidlak-Wegrzyńska, B.; Sikorska, W. Chapter 14—Present and Future of Biodegradable Polymers for Food Packaging Applications. In Handbook of Food Bioengineering; Biopolymers for food design; Academic Press: Cambridge, MA, USA, 2018; pp. 431–467. [Google Scholar]
- Han, J.; Shi, J.; Xie, Z.; Xu, J.; Guo, B. Synthesis, Properties of biodegradable poly(butylene succinate-co-butylene 2-methylsuccinate) and application for sustainable release. Materials 2019, 12, 1507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurczyk, S.; Kurcok, P.; Musioł, M. Multifunctional Composite Ecomaterials and Their Impact on Sustainability. In Handbook of Ecomaterials; Martínez, L.M.T., Kharissova, O.V., Kharisov, B.I., Eds.; Springer International Publishing AG: Cham, Switzerland, 2019; pp. 3193–3222. [Google Scholar]
- Musioł, M.; Jurczyk, S.; Sobota, M.; Klim, M.; Sikorska, W.; Zięba, M.; Janeczek, H.; Rydz, J.; Kurcok, P.; Johnston, B.; et al. (Bio)degradable polymeric materials for sustainable future—Part 3: Degradation studies of the PHA/wood flour-based composites and preliminary tests of antimicrobial activity. Materials 2020, 13, 2200. [Google Scholar] [CrossRef] [PubMed]
- Rydz, J.; Włodarczyk, J.; Gonzalez Ausejo, J.; Musioł, M.; Sikorska, W.; Sobota, M.; Hercog, A.; Duale, K.; Janeczek, H. Three-dimensional printed PLA and PLA/PHA dumbbell-shaped specimens: Material defects and their impact on degradation behavior. Materials 2020, 13, 2005. [Google Scholar] [CrossRef] [PubMed]
- Kupczak, M.; Mielańczyk, A.; Neugebauer, D. The influence of polymer composition on the hydrolytic and enzymatic degradation of polyesters and their block copolymers with PDMAEMA. Materials 2021, 14, 3636. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Guo, C.; Shi, Y.; Li, L.C. Recent advances in polymeric microspheres for parenteral drug delivery—Part 1. Expert Opin. Drug Deliv. 2012, 9, 1161–1176. [Google Scholar] [CrossRef] [PubMed]
- Opálková Šišková, A.; Kozma, E.; Opálek, A.; Kroneková, Z.; Kleinová, A.; Nagy, Š.; Kronek, J.; Rydz, J.; Eckstein Andicsová, A. Diclofenac embedded in silk fibroin fibers as a drug delivery system. Materials 2020, 13, 3580. [Google Scholar] [CrossRef] [PubMed]
- Pérez-de-Luque, A.; Rubiales, D. Nanotechnology for parasitic plant control. Pest. Manag. Sci. 2009, 65, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Lewicka, K.; Dobrzynski, P.; Rychter, P. PLAGA-PEG-PLAGA Terpolymer-based carriers of herbicides for potential application in environment-friendly, controlled release systems of agrochemicals. Materials 2020, 13, 2778. [Google Scholar] [CrossRef]
- Lewicka, K.; Rychter, P.; Pastusiak, M.; Janeczek, H.; Dobrzynski, P. Biodegradable blends of grafted dextrin with PLGA-block-PEG copolymer as a carrier for controlled release of herbicides into soil. Materials 2020, 13, 832. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rydz, J.; Musioł, M. Applications of Novel Biodegradable Polymeric Materials. Materials 2022, 15, 8411. https://doi.org/10.3390/ma15238411
Rydz J, Musioł M. Applications of Novel Biodegradable Polymeric Materials. Materials. 2022; 15(23):8411. https://doi.org/10.3390/ma15238411
Chicago/Turabian StyleRydz, Joanna, and Marta Musioł. 2022. "Applications of Novel Biodegradable Polymeric Materials" Materials 15, no. 23: 8411. https://doi.org/10.3390/ma15238411
APA StyleRydz, J., & Musioł, M. (2022). Applications of Novel Biodegradable Polymeric Materials. Materials, 15(23), 8411. https://doi.org/10.3390/ma15238411