Role of Magnesium in Ultra-Low-Radioactive Titanium Production for Future Direct Dark Matter Search Detectors
Abstract
:1. Introduction
2. The Role of Magnesium in the Production of High-Pure Titanium
3. Materials and Methods
Impurity Determination by ICP-MS
4. Results and Discussion
- -
- Dehydration in the solid state with a gradual increase in temperature from 90 to 200–210 °C (dehydrated carnallite contains 2.5–5% water at the outlet of the unit);
- -
- Melting of dehydrated carnallite at 500 °C, followed by heating to 750–800 °C and holding at these temperatures in order to finally remove moisture and separate MgO (obtaining anhydrous carnallite).
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ginzburg, V.L. On Superconductivity and Superfluidity (What I Have and Have Not Managed to Do), as Well as on the “physical Minimum” at the Beginning of the XXI Century (December 8, 2003). Physics-Uspekhi 2004, 47, 1155–1170. [Google Scholar] [CrossRef]
- Empl, A.; Jasim, R.; Hungerford, E.; Mosteiro, P. Study of Cosmogenic Neutron Backgrounds at LNGS. arXiv 2012, arXiv:1210.2708. [Google Scholar]
- Westerdale, S.; Meyers, P.D. Radiogenic Neutron Yield Calculations for Low-Background Experiments. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 875, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Agnes, P.; Agostino, L.; Albuquerque, I.F.M.; Alexander, T.; Alton, A.K.; Arisaka, K.; Back, H.O.; Baldin, B.; Biery, K.; Bonfini, G.; et al. The Veto System of the DarkSide-50 Experiment. J. Instrum. 2016, 11, P03016. [Google Scholar] [CrossRef]
- Chepurnov, A.; Nisi, S.; di Vacri, M.L.; Suvorov, Y. The Ultra-Pure Ti for the Low Background Experiments. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2013; pp. 161–164. [Google Scholar] [CrossRef]
- Akerib, D.S.; Bai, X.; Bedikian, S.; Bernard, E.; Bernstein, A.; Bradley, A.; Cahn, S.B.; Carmona-Benitez, M.C.; Carr, D.; Chapman, J.J.; et al. Radio-Assay of Titanium Samples for the LUX Experiment. arXiv 2011, arXiv:1112.1376. [Google Scholar]
- Akerib, D.S.; Akerlof, C.W.; Akimov, D.Y.; Alsum, S.K.; Araújo, H.M.; Arnquist, I.J.; Arthurs, M.; Bai, X.; Bailey, A.J.; Balajthy, J.; et al. (The LUX-ZEPLIN (LZ) Collaboration). Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches. Astropart. Phys. 2017, 96, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mozhevitina, E.; Chepurnov, A.; Chub, A.; Avetissov, I.; Glebovsky, V.; Nisi, S.; di Vacri, M.L.; Suvorov, Y. Study of the Kroll-Process to Produce Ultra-Pure Ti for the Low Background Experiments. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2015; p. 050001. [Google Scholar] [CrossRef]
- Revel, G.; Pastol, J.-L.; Rouchaud, J.-C.; Fromageau, R. Purification of Magnesium by Vacuum Distillation. Metall. Trans. B 1978, 9, 665–672. [Google Scholar] [CrossRef]
- Kroll, W. The Production of Ductile Titanium. Trans. Electrochem. Soc. 1940, 78, 35. [Google Scholar] [CrossRef]
- Pruszkowski, E.; Life, P. Total Quant Analysis of Teas and Wines by ICP-MS, Perkin Elmer Life and Analytical Sciences, Field Application Report, ICP Mass Spectrometry, USA. 2004. Available online: https://ru.scribd.com/document/102447386/TotalQuant-Analysis-of-Teas-and-Wines-by-ICP-MS (accessed on 1 July 2021).
- Wilbur, S.M.; Sugiyama, N.; McCurdy, E. Optimizing Performance for a Collision/Reaction Cell ICP-MS System Operating in Helium Collision Mode. Spectrosc. Appl. ICPICP-MS Suppl. 2010, 25, 11. Available online: http://www.spectroscopyonline.com/optimizing-performance-collisionreaction-cell-icp-ms-system-operating-helium-collision-mode (accessed on 30 June 2021).
- Shekhovtsov, G.; Shchegolev, V.; Devyatkin, V.; Tatakin, A.; Zabelin, I. Magnesium Electrolytic Production Process. In Essential Readings in Magnesium Technology; Springer International Publishing: Cham, Switzerland, 2016; pp. 97–100. [Google Scholar] [CrossRef]
- Wu, L.; Han, F.; Liu, G. Magnesium Smelting via the Pidgeon Process. In Comprehensive Utilization of Magnesium Slag by Pidgeon Process; Springer: Singapore, 2021; pp. 45–68. [Google Scholar] [CrossRef]
Th Concentration, ppb | U Concentration, ppb | |
---|---|---|
TiCl4 | ||
Sample 1 | <0.02 | <0.04 |
Sample 2 | <0.02 | <0.04 |
Sample 3 | <0.02 | <0.04 |
Nebulizer type | Concentric (Meinhard), PFA |
Spray chamber | Scott double-pass chamber, PFA |
Argon flow rate, L/min | |
through the nebulizer | 0.96 |
Plasma-forming | 15 |
Auxiliary | 1.2 |
Generator power, W | 1450 |
Collision gas (He) flow rate, L/min | 4.6 |
Number of scan cycles | 8 |
Sample ID | Th Concentration, ppb | U Concentration, ppb | ||
---|---|---|---|---|
Content | Standard Deviation | Content | Standard Deviation | |
Mg obtained by electrolysis | ||||
Mg-E1 | 37 | 2 | 7.7 | 0.4 |
Mg-E2 | 40 | 3 | 8.5 | 0.8 |
Mg-E3 | 36 | 3 | 1.6 | 0.2 |
Mg-E4 | 52 | 4 | 7.8 | 0.4 |
Mg after sublimation | ||||
Mg-S-Top | 10 | 3 | 0.04 | 0.01 |
Mg-S-Bot | 2.9 | 0.9 | 0.9 | 0.3 |
Mg-S-Cube | 1379 | 108 | 0.22 | 0.02 |
Mg obtained by Pidgeon process | ||||
Mg-China | 2.52 | 0.73 | 0.001 | 0.0005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zykova, M.; Voronina, E.; Chepurnov, A.; Rymkevich, D.; Tankeev, A.; Vlasov, S.; Chub, A.; Avetissov, I. Role of Magnesium in Ultra-Low-Radioactive Titanium Production for Future Direct Dark Matter Search Detectors. Materials 2022, 15, 8872. https://doi.org/10.3390/ma15248872
Zykova M, Voronina E, Chepurnov A, Rymkevich D, Tankeev A, Vlasov S, Chub A, Avetissov I. Role of Magnesium in Ultra-Low-Radioactive Titanium Production for Future Direct Dark Matter Search Detectors. Materials. 2022; 15(24):8872. https://doi.org/10.3390/ma15248872
Chicago/Turabian StyleZykova, Marina, Elena Voronina, Alexander Chepurnov, Dmitry Rymkevich, Aleksey Tankeev, Sergey Vlasov, Alexander Chub, and Igor Avetissov. 2022. "Role of Magnesium in Ultra-Low-Radioactive Titanium Production for Future Direct Dark Matter Search Detectors" Materials 15, no. 24: 8872. https://doi.org/10.3390/ma15248872
APA StyleZykova, M., Voronina, E., Chepurnov, A., Rymkevich, D., Tankeev, A., Vlasov, S., Chub, A., & Avetissov, I. (2022). Role of Magnesium in Ultra-Low-Radioactive Titanium Production for Future Direct Dark Matter Search Detectors. Materials, 15(24), 8872. https://doi.org/10.3390/ma15248872