Deicer Salt-Scaling Resistance of Concrete Using Recycled Concrete Aggregates Pretreated by Silica Fume Slurry
Abstract
:Highlights
- Salt-scaling resistance in the presence of recycled concrete aggregates
- A strong bond between RCAs and new mortar was obtained after a freeze-thaw test
- Pulse velocity after exposure to freezing-thawing cycles negligibly decreased
- The scaling rate increased with the increase in the water–cement ratio
- The electrical resistivity of concrete after exposure to cycles has been investigated
Abstract
1. Introduction
2. Significance of the Research
3. Materials, Modification and Test Methods
4. Results and Discussion
4.1. Visual Laboratory Observations
4.2. Mass Loss
4.3. Ultrasonic Pulse Velocity
4.4. Microstructure Study
4.5. Electrical Resistance
4.6. Estimation of Total Charge Passed
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medina, C.; de Rojas, M.I.S.; Frías, M. Freeze-thaw durability of recycled concrete containing ceramic aggregate. J. Clean. Prod. 2013, 40, 151–160. [Google Scholar] [CrossRef]
- Shang, H.; Song, Y.; Ou, J. Behavior of air-entrained concrete after freeze-thaw cycles. Acta Mech. Solida Sin. 2009, 22, 261–266. [Google Scholar] [CrossRef]
- Richardson, A.; Coventry, K.; Bacon, J. Freeze/thaw durability of concrete with recycled demolition aggregate compared to virgin aggregate concrete. J. Clean. Prod. 2011, 19, 272–277. [Google Scholar] [CrossRef]
- Rangel, C.S.; Amario, M.; Pepe, M.; Martinelli, E.; Filho, R.D.T. Durability of structural recycled aggregate concrete subjected to freeze-thaw cycles. Sustainability 2020, 12, 6475. [Google Scholar] [CrossRef]
- Pigeon, M. Durability of Concrete in Cold Climates; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar] [CrossRef]
- Valenza, J.J.; Scherer, G.W. A review of salt scaling: II. Mechanisms. Cem. Concr. Res. 2007, 37, 1022–1034. [Google Scholar] [CrossRef]
- Valenza, J.J.; Scherer, G.W. A review of salt scaling: I. Phenomenology. Cem. Concr. Res. 2007, 37, 1007–1021. [Google Scholar] [CrossRef]
- Matalkah, F.; Soroushian, P. Freeze thaw and deicer salt scaling resistance of concrete prepared with alkali aluminosilicate cement. Constr. Build. Mater. 2018, 163, 200–213. [Google Scholar] [CrossRef]
- Marvila, M.; de Matos, P.; Rodríguez, E.; Monteiro, S.N.; de Azevedo, A.R.G. Recycled Aggregate: A Viable Solution for Sustainable Concrete Production. Materials 2022, 15, 5276. [Google Scholar] [CrossRef]
- Zaharieva, R.; Buyle-Bodin, F.; Wirquin, E. Frost resistance of recycled aggregate concrete. Cem. Concr. Res. 2004, 34, 1927–1932. [Google Scholar] [CrossRef]
- Kazmi, S.M.S.; Munir, M.J.; Wu, Y.F.; Patnaikuni, I.; Zhou, Y.; Xing, F. Effect of different aggregate treatment techniques on the freeze-thaw and sulfate resistance of recycled aggregate concrete. Cold Reg. Sci. Technol. 2020, 178, 103126. [Google Scholar] [CrossRef]
- Xiao, J.; Li, J.; Zhang, C. Mechanical properties of recycled aggregate concrete under uniaxial loading. Cem. Concr. Res. 2005, 35, 1187–1194. [Google Scholar] [CrossRef]
- Etxeberria, M.; Vázquez, E.; Marí, A.; Barra, M. Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem. Concr. Res. 2007, 37, 735–742. [Google Scholar] [CrossRef]
- Kou, S.C.; Poon, C.S. Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Constr. Build. Mater. 2012, 35, 69–76. [Google Scholar] [CrossRef]
- Guo, H.; Shi, C.; Guan, X.; Zhu, J.; Ding, Y.; Ling, T.C.; Zhang, H.; Wang, Y. Durability of recycled aggregate concrete—A review. Cem. Concr. Compos. 2018, 89, 251–259. [Google Scholar] [CrossRef]
- del Bosque, I.F.S.; van den Heede, P.; de Belie, N.; de Rojas, M.I.S.; Medina, C. Freeze-thaw resistance of concrete containing mixed aggregate and construction and demolition waste-additioned cement in water and de-icing salts. Constr. Build. Mater. 2020, 259, 119772. [Google Scholar] [CrossRef]
- Huda, S.B.; Alam, M.S. Mechanical and Freeze-Thaw Durability Properties of Recycled Aggregate Concrete Made with Recycled Coarse Aggregate. J. Mater. Civ. Eng. 2015, 27, 04015003. [Google Scholar] [CrossRef]
- Shi, C.; Li, Y.; Zhang, J.; Li, W.; Chong, L.; Xie, Z. Performance enhancement of recycled concrete aggregate—A review. J. Clean. Prod. 2016, 112, 466–472. [Google Scholar] [CrossRef]
- Mistri, A.; Bhattacharyya, S.K.; Dhami, N.; Mukherjee, A.; Barai, S.V. A review on different treatment methods for enhancing the properties of recycled aggregates for sustainable construction materials. Constr. Build. Mater. 2020, 233, 117894. [Google Scholar] [CrossRef]
- ASTM C127; Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate. ASTM International: West Conshohoken, PA, USA, 2004.
- de Juan, M.S.; Gutiérrez, P.A. Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Constr. Build. Mater. 2009, 23, 872–877. [Google Scholar] [CrossRef]
- EN 12201-1:2003; Plastics Piping Systems for Water Supply-Polyethylene (PE)-Part 1.: General, hat den Status einer Deutschen Norm. Nationales Vorwort. European Committee for Standardization (CEN): Brussel, Belgium, 2005.
- Tuyan, M.; Mardani-aghabaglou, A.; Ramyar, K. Freeze-thaw resistanc, mechanical and transport properties of self-consolidating concrete incorporating coarse recycled concrete aggregate. Mater. Des. 2014, 53, 983–991. [Google Scholar] [CrossRef]
- Mardani-Aghabaglou, A.; Andiç-Çakir, Ö.; Ramyar, K. Freeze-thaw resistance and transport properties of high-volume fly ash roller compacted concrete designed by maximum density method. Cem. Concr. Compos. 2013, 37, 259–266. [Google Scholar] [CrossRef]
- Zhu, P.; Hao, Y.; Liu, H.; Wei, D.; Liu, S.; Gu, L. Durability evaluation of three generations of 100% repeatedly recycled coarse aggregate concrete. Constr. Build. Mater. 2019, 210, 442–450. [Google Scholar] [CrossRef]
- Bogas, J.A.; de Brito, J.; Ramos, D. Freeze-thaw resistance of concrete produced with fine recycled concrete aggregates. J. Clean. Prod. 2016, 115, 294–306. [Google Scholar] [CrossRef]
- Grubeša, I.N.; Markovic, B.; Vracevic, M.; Tunkiewicz, M.; Szenti, I.; Kukovecz, Á. Pore structure as a response to the freeze/thaw resistance of mortars. Materials 2019, 12, 3196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Song, X.; Yang, H.; Wang, L.; Tang, S.; Wu, B.; Mao, W. Pore Structural and Fractal Analysis of the Effects of MgO Reactivity and Dosage on Permeability and F–T Resistance of Concrete. Fractal Fract. 2022, 6, 113. [Google Scholar] [CrossRef]
- Wang, L.; Guo, F.; Yang, H.; Wang, Y.A.N.; Tang, S. Comparison of fly ash, PVA fiber, MGO and shrinkage-reducing admixture on the frost resistance of face slab concrete via pore structural and fractal analysis. Fractals 2021, 29, 2140002. [Google Scholar] [CrossRef]
- Wang, L.; He, T.; Zhou, Y.; Tang, S.; Tan, J.; Liu, Z.; Su, J. The influence of fiber type and length on the cracking resistance, durability and pore structure of face slab concrete. Constr. Build. Mater. 2021, 282, 122706. [Google Scholar] [CrossRef]
- Fagerlund, G.; Setzer, M. RILEM Committee TC-II7 FDC Freeze-Thaw and De-Icing Resistance of Concrete; Research Seminar Held in Lund, June 17, 1991; Lund University: Lund, Sweden, 1992. [Google Scholar]
- Petersson, P.E. The Influence of Silica Fume on the Salt Frost Resistance of Concrete; Technical Report SP-RAPP 1986; Swedish National Testing Institute, Division of Building Technology: Boras, Sweden, 1986; Volume 32. [Google Scholar]
- Powers, T.C. A Working Hypothesis for Further Studies of Frost Resistance of Concrete. ACI J. Proc. 1945, 41, 245–272. [Google Scholar] [CrossRef]
- Zhang, M.H.; Malhotra, V.M.; Bouzoubaa, N. Mechanical properties and durability of concrete made with high-volume fly ash blended cements using a coarse fly ash. Cem. Concr. Res. 2001, 31, 1393–1402. [Google Scholar]
- Kim, M.; Kang, S.H.; Hong, S.G.; Moon, J. Influence of Effective Water-to-Cement Ratios on Internal Damage and Salt Scaling of Concrete with Superabsorbent Polymer. Materials 2019, 12, 3863. [Google Scholar] [CrossRef]
- Lafhaj, Z.; Goueygou, M.; Djerbi, A.; Kaczmarek, M. Correlation between porosity, permeability and ultrasonic parameters of mortar with variable water/cement ratio and water content. Cem. Concr. Res. 2006, 36, 625–633. [Google Scholar] [CrossRef]
- Sasanipour, H.; Aslani, F. Durability properties evaluation of self-compacting concrete prepared with waste fine and coarse recycled concrete aggregates. Constr. Build. Mater. 2019, 236, 117540. [Google Scholar] [CrossRef]
- Jain, A.; Kathuria, A.; Kumar, A.; Verma, Y.; Murari, K. Combined use of non-destructive tests for assessment of strength of concrete in structure. Procedia Eng. 2013, 54, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Popovics, S.; Rose, J.L.; Popovics, J.S. The Behavior of Ultrasonic Pulses in Concrete. Cem. Concr. Res. 1990, 20, 259–270. [Google Scholar] [CrossRef]
- Sasanipour, H.; Aslani, F.; Taherinezhad, J. Chloride ion permeability improvement of recycled aggregate concrete using pretreated recycled aggregates by silica fume slurry. Constr. Build. Mater. 2021, 270, 121498. [Google Scholar] [CrossRef]
- IS 13311-1; Non-Destructive Testing of Concrete—Methods of Test-Part 1 Ultrasonic Pulse Velocity. Bureau of Indian Standards: New Dheli, India, 1992.
- Mohamed, W.; Yang, J.; Su, H.; Liu, Q.; Tsang, D.C.W. Properties of recycled concrete aggregates strengthened by different types of pozzolan slurry. Constr. Build. Mater. 2019, 216, 632–647. [Google Scholar] [CrossRef]
- Babu, V.S.; Mullick, A.K.; Jain, K.K.; Singh, P.K. Strength and durability characteristics of high-strength concrete with recycled aggregate-influence of processing. J. Sustain. Cem. Mater. 2014, 4, 54–71. [Google Scholar] [CrossRef]
- Kapoor, K.; Singh, S.P.; Singh, B. Durability of self-compacting concrete made with Recycled Concrete Aggregates and mineral admixtures. Constr. Build. Mater. 2016, 128, 67–76. [Google Scholar] [CrossRef]
- Ho, H.L.; Huang, R.; Lin, W.T.; Cheng, A. Pore-structures and durability of concrete containing pre-coated fine recycled mixed aggregates using pozzolan and polyvinyl alcohol materials. Constr. Build. Mater. 2018, 160, 278–292. [Google Scholar] [CrossRef]
- Wang, Y.; Ueda, T.; Gong, F.; Zhang, D.; Wang, Z. Experimental examination of electrical characteristics for portland cement mortar frost damage evaluation. Materials 2020, 13, 1258. [Google Scholar] [CrossRef]
- Farnam, Y.; Todak, H.; Spragg, R.; Weiss, J. Electrical response of mortar with different degrees of saturation and deicing salt solutions during freezing and thawing. Cem. Concr. Compos. 2015, 59, 49–59. [Google Scholar] [CrossRef]
- Hornbostel, K.; Larsen, C.K.; Geiker, M.R. Relationship between concrete resistivity and corrosion rate—A literature review. Cem. Concr. Compos. 2013, 39, 60–72. [Google Scholar] [CrossRef]
- Cavalier, P.G.; Vassie, P.R. Investigation and Repair of Reinforcement Corrosion in a Bridge Deck. Proc. Inst. Civ. Eng. 1981, 70, 461–480. [Google Scholar] [CrossRef]
- López, W.; González, J.A. Influence of the degree of pore saturation on the resistivity of concrete and the corrosion rate of steel reinforcement. Cem. Concr. Res. 1993, 23, 368–376. [Google Scholar] [CrossRef]
- Morris, W.; Vico, A.; Vazquez, M.; de Sanchez, S.R. Corrosion of reinforcing steel evaluated by means of concrete resistivity measurements. Corros. Sci. 2002, 44, 81–99. [Google Scholar] [CrossRef]
- ASTM C1202; Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International: West Conshohoken, PA, USA, 2016. [CrossRef]
Chemical Properties | Cement | Silica Fume |
---|---|---|
(%) | (%) | |
SiO2 | 21.27 | 85–95 |
CaO | 62.95 | - |
Fe2O3 | 4.03 | 0.4–2 |
Al2O3 | 4.95 | 0.5–1.7 |
MgO | 1.55 | 0.1–0.9 |
Na2O | 0.49 | 0.15–0.2 |
K2O | 0.65 | 0.15–1.02 |
SO3 | 2.26 | - |
C3A | 6.3 | - |
LOI | 2.11 | 3.5 |
Physical Properties | Cement | Silica Fume |
---|---|---|
Specific gravity | 3–3.1 | 2.21 |
Specific surface (cm2/gr) | 2910 | 14,000 |
Setting Time (min) | Initial—154 | - |
Final—195 | - | |
Mortar Compressive strength (MPa) | ||
f’c 3 days | 20.1 | - |
f’c 7 days | 28.2 | - |
f’c 28 days | 40.3 | - |
Type of Aggregate | Density (g/cm3) | Maximum Size (mm) | Fineness Modulus | Water Absorption (%) | Los Angeles Abrasion (%) | Adhered Mortar (%) | |
---|---|---|---|---|---|---|---|
Coarse | Natural | 2.63 | 19 | - | 1.7 | 15.2 | - |
RCA | 2.39 | 19 | - | 5.4 | 33.1 | 37.8 | |
Fine | Natural | 2.63 | - | 3.88 | 2.61 | - | - |
Mix Code | W/C | C | W | SF | Coarse Natural Aggregate | Coarse Recycled Aggregate | Fine Aggregate | Limestone Powder | SP (%) | Compressive Strength (MPa) |
---|---|---|---|---|---|---|---|---|---|---|
Kg/m3 | ||||||||||
NC 0.30 | 0.30 | 386.4 | 126 | 33.6 | 750 | - | 938 | 184 | 1.1 | 78.1 |
NC 0.35 | 0.35 | 386.4 | 147 | 33.6 | 728 | - | 911 | 179 | 1.1 | 72.6 |
NC 0.40 | 0.40 | 386.4 | 168 | 33.6 | 706 | - | 883 | 173 | 1.1 | 58.9 |
RAC 0.30 | 0.30 | 386.4 | 126 | 33.6 | - | 682 | 938 | 184 | 1.1 | 60.3 |
RAC 0.35 | 0.35 | 386.4 | 147 | 33.6 | - | 662 | 911 | 179 | 1.1 | 57.2 |
RAC 0.40 | 0.40 | 386.4 | 168 | 33.6 | - | 641 | 883 | 173 | 1.1 | 55.5 |
RACCM 0.30 | 0.30 | 386.4 | 126 | 33.6 | - | 682 | 938 | 184 | 1.1 | 61 |
RACCM 0.35 | 0.35 | 386.4 | 147 | 33.6 | - | 662 | 911 | 179 | 1.1 | 54.5 |
RACCM 0.40 | 0.40 | 386.4 | 168 | 33.6 | - | 641 | 883 | 173 | 1.1 | 50.6 |
RACCD 0.30 | 0.30 | 386.4 | 126 | 33.6 | - | 682 | 938 | 184 | 1.1 | 59.8 |
RACCD 0.35 | 0.35 | 386.4 | 147 | 33.6 | - | 662 | 911 | 179 | 1.1 | 55.4 |
RACCD 0.40 | 0.40 | 386.4 | 168 | 33.6 | - | 641 | 883 | 173 | 1.1 | 50.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasanipour, H.; Aslani, F.; Taherinezhad, J. Deicer Salt-Scaling Resistance of Concrete Using Recycled Concrete Aggregates Pretreated by Silica Fume Slurry. Materials 2022, 15, 8874. https://doi.org/10.3390/ma15248874
Sasanipour H, Aslani F, Taherinezhad J. Deicer Salt-Scaling Resistance of Concrete Using Recycled Concrete Aggregates Pretreated by Silica Fume Slurry. Materials. 2022; 15(24):8874. https://doi.org/10.3390/ma15248874
Chicago/Turabian StyleSasanipour, Hossein, Farhad Aslani, and Javad Taherinezhad. 2022. "Deicer Salt-Scaling Resistance of Concrete Using Recycled Concrete Aggregates Pretreated by Silica Fume Slurry" Materials 15, no. 24: 8874. https://doi.org/10.3390/ma15248874
APA StyleSasanipour, H., Aslani, F., & Taherinezhad, J. (2022). Deicer Salt-Scaling Resistance of Concrete Using Recycled Concrete Aggregates Pretreated by Silica Fume Slurry. Materials, 15(24), 8874. https://doi.org/10.3390/ma15248874