Polyaniline and Polyaniline-Based Materials as Sorbents in Solid-Phase Extraction Techniques
Abstract
:1. Introduction
2. General Information
2.1. Synthesis
2.2. Structure and Physicochemical Properties of PANI
3. Application of Polyaniline and Polyaniline Composites in Separation Techniques Based on Solid-Phase Extraction
3.1. Conventional Solid-Phase Extraction (SPE) and Its Modifications
3.2. Solid-Phase Microextraction (SPME)
3.2.1. Direct-Immersion Solid-Phase Microextraction (DI-SPME)
3.2.2. Headspace Solid-Phase Microextraction (HS-SPME)
3.3. Dispersive Solid-Phase Extraction (dSPE)
Magnetic Solid-Phase Extraction (MSPE)
3.4. Stir Bar Sorptive Extraction
4. Liquid Chromatography (LC)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAS | atomic absorption spectrometry |
DAD | diode array detector |
DI-SPME | direct immersion SPME |
dSPE | dispersive solid-phase extraction |
ECD | electron capture detector |
FAAS | flame AAS |
FID | flame ionization detector |
FL | fluorescence detector |
GC | gas chromatography |
GO | graphene oxide |
HPIC | high-pressure ion chromatography |
HPLC | high-performance liquid chromatography |
HS-SPME | headspace SPME |
ICP | inductively coupled plasma detector |
LC | liquid chromatography |
IL | ionic liquid |
MALDI | matrix assisted laser desorption ionization |
TOF | time of flight detector |
MEKC | micellar electrokinetic chromatography |
MNPs | magnetic nanoparticles |
MS | mass spectrometry |
MSPE | magnetic solid-phase extraction |
MWCNT | multiwall carbon nanotubes |
NPs | nanoparticles |
PANI | polyaniline |
PAHs | polycyclic aromatic hydrocarbons |
PPy | polypyrrole |
PS-DVB | poly (styrene-divinylbenzene) |
SBSE | stir bar sorptive extraction |
SBSE | stir-bar sorptive extraction |
Si-PANI | silica gel covered with polyaniline |
SPE | solid-phase microextraction |
SPME | solid-phase microextraction |
UHPLC | ultra high performance/pressure liquid chromatography |
UPLC | ultra performance liquid chromatography |
UV-VIS | ultraviolet visible spectroscopy |
μSPE | micro solid-phase microextraction |
References
- Beygisangchin, M.; Abdul Rashid, S.; Shafie, S.; Sadrolhosseini, A.R.; Lim, H.N. Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films—A Review. Polymers 2021, 13, 2003. [Google Scholar] [CrossRef] [PubMed]
- Babel, V.; Hiran, B.L. A Review on Polyaniline Composites: Synthesis, Characterization, and Applications. Polym. Compos. 2021, 42, 3142–3157. [Google Scholar] [CrossRef]
- Majeed, A.H.; Mohammed, L.A.; Hammoodi, O.G.; Sehgal, S.; Alheety, M.A.; Saxena, K.K.; Dadoosh, S.A.; Mohammed, I.K.; Jasim, M.M.; Salmaan, N.U. A Review on Polyaniline: Synthesis, Properties, Nanocomposites, and Electrochemical Applications. Int. J. Polym. Sci. 2022, 2022, e9047554. [Google Scholar] [CrossRef]
- Câmara, J.S.; Perestrelo, R.; Berenguer, C.V.; Andrade, C.F.P.; Gomes, T.M.; Olayanju, B.; Kabir, A.; Rocha, C.M.R.; Teixeira, J.A.; Pereira, J.A.M. Green Extraction Techniques as Advanced Sample Preparation Approaches in Biological, Food, and Environmental Matrices: A Review. Molecules 2022, 27, 2953. [Google Scholar] [CrossRef] [PubMed]
- Billiard, K.M.; Dershem, A.R.; Gionfriddo, E. Implementing Green Analytical Methodologies Using Solid-Phase Microextraction: A Review. Molecules 2020, 25, 5297. [Google Scholar] [CrossRef]
- Zambonin, C.; Aresta, A. Recent Applications of Solid Phase Microextraction Coupled to Liquid Chromatography. Separations 2021, 8, 34. [Google Scholar] [CrossRef]
- Fontanals, N.; Marcé, R.M.; Borrull, F. Materials for Solid-Phase Extraction of Organic Compounds. Separations 2019, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Sadutto, D.; Picó, Y. Sample Preparation to Determine Pharmaceutical and Personal Care Products in an All-Water Matrix: Solid Phase Extraction. Molecules 2020, 25, 5204. [Google Scholar] [CrossRef]
- Khan, M.; Ali, S.W.; Shahadat, M.; Sagadevan, S. Applications of Polyaniline-Impregnated Silica Gel-Based Nanocomposites in Wastewater Treatment as an Efficient Adsorbent of Some Important Organic Dyes. Green Process. Synth. 2022, 11, 617–630. [Google Scholar] [CrossRef]
- Stejskal, J. Recent Advances in the Removal of Organic Dyes from Aqueous Media with Conducting Polymers, Polyaniline and Polypyrrole, and Their Composites. Polymers 2022, 14, 4243. [Google Scholar] [CrossRef]
- Das, H.T.; Dutta, S.; Beura, R.; Das, N. Role of Polyaniline in Accomplishing a Sustainable Environment: Recent Trends in Polyaniline for Eradicating Hazardous Pollutants. Environ. Sci. Pollut. Res. Int. 2022, 29, 49598–49631. [Google Scholar] [CrossRef]
- Khan, M.I.; Almesfer, M.K.; Elkhaleefa, A.; Shigidi, I.; Shamim, M.Z.; Ali, I.H.; Rehan, M. Conductive Polymers and Their Nanocomposites as Adsorbents in Environmental Applications. Polymers 2021, 13, 3810. [Google Scholar] [CrossRef]
- Ali, I.; Kuznetsova, T.S.; Burakov, A.E.; Burakova, I.V.; Pasko, T.V.; Dyachkova, T.P.; Mkrtchyan, E.S.; Babkin, A.V.; Tkachev, A.G.; Albishri, H.M.; et al. Polyaniline Modified CNTs and Graphene Nanocomposite for Removal of Lead and Zinc Metal Ions: Kinetics, Thermodynamics and Desorption Studies. Molecules 2022, 27, 5623. [Google Scholar] [CrossRef]
- Trchová, M.; Matějka, P.; Brodinová, J.; Kalendová, A.; Prokeš, J.; Stejskal, J. Structural and Conductivity Changes during the Pyrolysis of Polyaniline Base. Polym. Degrad. Stab. 2006, 91, 114–121. [Google Scholar] [CrossRef]
- Brožová, L.; Holler, P.; Kovářová, J.; Stejskal, J.; Trchová, M. The Stability of Polyaniline in Strongly Alkaline or Acidic Aqueous Media. Polym. Degrad. Stab. 2008, 93, 592–600. [Google Scholar] [CrossRef]
- Bagheri, H.; Alipour, N.; Ayazi, Z. Multiresidue Determination of Pesticides from Aquatic Media Using Polyaniline Nanowires Network as Highly Efficient Sorbent for Microextraction in Packed Syringe. Anal. Chim. Acta 2012, 740, 43–49. [Google Scholar] [CrossRef]
- Bagheri, H.; Saraji, M.; Barceló, D. Evaluation of Polyaniline as a Sorbent for SPE of a Variety of Polar Pesticides from Water Followed by CD-MEKC-DAD. Chromatographia 2004, 59, 283–289. [Google Scholar] [CrossRef]
- Bagheri, H.; Saraji, M. New Polymeric Sorbent for the Solid-Phase Extraction of Chlorophenols from Water Samples Followed by Gas Chromatography–Electron-Capture Detection. J. Chromatogr. A 2001, 910, 87–93. [Google Scholar] [CrossRef]
- Bagheri, H.; Saraji, M. Conductive Polymers as New Media for Solid-Phase Extraction: Isolation of Chlorophenols from Water Sample. J. Chromatogr. A 2003, 986, 111–119. [Google Scholar] [CrossRef]
- Amiri, A.; Baghayeri, M.; Koshki, M.-S. Electrochemical Deposition of Polyaniline on the Stainless Steel Mesh for the Extraction of Polycyclic Aromatic Hydrocarbons. Microchem. J. 2022, 173, 107014. [Google Scholar] [CrossRef]
- Sowa, I.; Kocjan, R.; Wójciak-Kosior, M.; Świeboda, R.; Zajdel, D.; Hajnos, M. Physicochemical Properties of Silica Gel Coated with a Thin Layer of Polyaniline (PANI) and Its Application in Non-Suppressed Ion Chromatography. Talanta 2013, 115, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Sowa, I.; Wójciak-Kosior, M.; Drączkowski, P.; Szwerc, W.; Tylus, J.; Pawlikowski, A.; Kocjan, R. Evaluation of PH and Thermal Stability of Sorbent Based on Silica Modified with Polyaniline Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry and Raman Spectroscopy. Microchem. J. 2015, 118, 88–94. [Google Scholar] [CrossRef]
- Sowa, I.; Wojciak-Kosior, M.; Kocjan, R. The Content of Some Trace Elements in Selected Medicinal Plants Collected in the Province of Lublin. Acta Sci. Pol. Hortorum Cultus 2012, 11, 15–22. [Google Scholar]
- Sowa, I.; Wójciak-Kosior, M.; Rokicka, K.; Kocjan, R.; Szymczak, G. Application of Solid Phase Extraction with the Use of Silica Modified with Polyaniline Film for Pretreatment of Samples from Plant Material before HPLC Determination of Triterpenic Acids. Talanta 2014, 122, 51–57. [Google Scholar] [CrossRef]
- Wójciak-Kosior, M.; Sowa, I.; Dresler, S.; Kováčik, J.; Staniak, M.; Sawicki, J.; Zielińska, S.; Świeboda, R.; Strzemski, M.; Kocjan, R. Polyaniline Based Material as a New SPE Sorbent for Pre-Treatment of Chelidonium Majus Extracts before Chromatographic Analysis of Alkaloids. Talanta 2019, 194, 32–37. [Google Scholar] [CrossRef]
- Sowa, I.; Pizoń, M.; Świeboda, R.; Kocjan, R.; Zajdel, D. Properties of Chelating Sorbent Prepared by Modification of Silica Gel with Polyaniline and Acid Alizarin Violet N. Sep. Sci. Technol. 2012, 47, 1194–1198. [Google Scholar] [CrossRef]
- Jian, N.; Li, R.; Li, J.; Liang, S.; Xu, Q.; Wang, C. Simple, Efficient, and Eco-Friendly Sample Preparation for Simultaneous Determination of Paracetamol and Chloramphenicol in Meat. J. Sep. Sci. 2019, 42, 2696–2705. [Google Scholar] [CrossRef]
- Jian, N.; Qian, L.; Wang, C.; Li, R.; Xu, Q.; Li, J. Novel Nanofibers Mat as an Efficient, Fast and Reusable Adsorbent for Solid Phase Extraction of Non-Steroidal Anti-Inflammatory Drugs in Environmental Water. J. Hazard. Mater. 2019, 363, 81–89. [Google Scholar] [CrossRef]
- Liang, S.; Jian, N.; Cao, J.; Zhang, H.; Li, J.; Xu, Q.; Wang, C. Rapid, Simple and Green Solid Phase Extraction Based on Polyaniline Nanofibers-Mat for Detecting Non-Steroidal Anti-Inflammatory Drug Residues in Animal-Origin Food. Food Chem. 2020, 328, 127097. [Google Scholar] [CrossRef]
- Feng, R.; Hu, X.; Ma, Y.; Sun, L.; Lv, Y.; Row, K.H.; Zhu, T. Synthesis of Poly (Styrene-Divinylbenzene) by Nano-TiO2 and the Application for Pipette-Tip Solid-Phase Extraction of Flavonoid in Epipremnum Aureum Rhizome. Sep. Sci. Technol. 2020, 55, 2294–2302. [Google Scholar] [CrossRef]
- Wan, X.; Dai, H.; Zhang, H.; Yang, H.; Li, F.; Xu, Q. Emerald-Based Polyaniline-Modified Polyacrylonitrile Nanofiber Mats Based Solid-Phase Extraction for Efficient and Simple Detection of Sudan Dyes in Poultry Feed. Microchem. J. 2022, 181, 107824. [Google Scholar] [CrossRef]
- Zybin, D.I.; Prostyakova, A.I.; Kapustin, D.V. Single-Step Isolation of DNA from the Soil Samples for PCR-Analysis Using Two-Component System Containing Polyaniline-Modified Silica and Alginate Microspheres. Microchem. J. 2021, 166, 106225. [Google Scholar] [CrossRef]
- Asgari, S.; Bagheri, H.; Es-haghi, A. Super-Porous Semi-Interpenetrating Polymeric Composite Prepared in Straw for Micro Solid Phase Extraction of Antibiotics from Honey, Urine and Wastewater. J. Chromatogr. A 2020, 1631, 461576. [Google Scholar] [CrossRef]
- Bagheri, H.; Banihashemi, S. Silver Nanoparticles–Polyaniline Nanocomposite for Microextraction in Packed Syringe. Chromatographia 2014, 77, 397–403. [Google Scholar] [CrossRef]
- Sadeghi, S.; Olieaei, S. Nanostructured Polyaniline Based Pipette Tip Solid Phase Extraction Coupled with High-Performance Liquid Chromatography for the Selective Determination of Trace Levels of Three Sulfonamides in Honey and Milk Samples with the Aid of Experimental Design Methodology. Microchem. J. 2019, 146, 974–985. [Google Scholar] [CrossRef]
- Chaves, A.R.; Moura, B.H.F.; Caris, J.A.; Rabelo, D.; Queiroz, M.E.C. The Development of a New Disposable Pipette Extraction Phase Based on Polyaniline Composites for the Determination of Levels of Antidepressants in Plasma Samples. J. Chromatogr. A 2015, 1399, 1–7. [Google Scholar] [CrossRef]
- Farahani, A.; Sereshti, H. An Integrated Microfluidic Device for Solid-Phase Extraction and Spectrophotometric Detection of Opium Alkaloids in Urine Samples. Anal. Bioanal. Chem. 2020, 412, 129–138. [Google Scholar] [CrossRef]
- Niu, P.; Li, F.; Liang, X.; Hou, X.; Lu, X.; Wang, X.; Li, Q.; Guo, Y. A Porous Polyaniline Nanotube Sorbent for Solid-Phase Extraction of the Fluorescent Reaction Product of Reactive Oxygen Species in Cells, and Its Determination by HPLC. Mikrochim. Acta 2018, 185, 468. [Google Scholar] [CrossRef]
- Ayadi, C.; Anene, A.; Kalfat, R.; Chevalier, Y.; Hbaieb, S. Molecularly Imprinted Polyaniline on Silica Support for the Selective Adsorption of Benzophenone-4 from Aqueous Media. Colloids Surf. Physicochem. Eng. Asp. 2019, 567, 32–42. [Google Scholar] [CrossRef]
- Sowa, I.; Wójciak-Kosior, M.; Kocjan, R. Application of SPE Technique Using a Newly Obtained Sorbent Based on Silica Gel Covered with Polyaniline to Simultaneous Determination of Nitrate (III) and Nitrate (V) Anions in Water Samples. Pol. J. Environ. Stud. 2013, 22, 881–884. [Google Scholar]
- Jian, N.-G.; Liang, S.-H.; Cao, J.-K.; Di, Q.-N.; Kang, K.; Xu, Q. A Nanofiber Mat Prepared from Sulfonated Polyaniline for Solid-Phase Extraction of Fluoroquinolones from Water and Biological Fluids Prior to Their Quantitation by UPLC-MS/MS. Mikrochim. Acta 2019, 186, 857. [Google Scholar] [CrossRef] [PubMed]
- Rattanakunsong, N.; Bunkoed, O. A Porous Composite Monolith Sorbent of Polyaniline, Multiwall Carbon Nanotubes and Chitosan Cryogel for Aromatic Compounds Extraction. Microchem. J. 2020, 154, 104562. [Google Scholar] [CrossRef]
- Arthur, C.L.; Pawliszyn, J. Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Mohammadi, A.; Mohammadi, S.; Bayandori Moghaddam, A.; Masoumi, V.; Walker, R.B. Electropolymerized Fluorinated Aniline-Based Fiber for Headspace Solid-Phase Microextraction and Gas Chromatographic Determination of Benzaldehyde in Injectable Pharmaceutical Formulations. J. Chromatogr. Sci. 2014, 52, 971–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagheri, H.; Mir, A.; Babanezhad, E. An Electropolymerized Aniline-Based Fiber Coating for Solid Phase Microextraction of Phenols from Water. Anal. Chim. Acta 2005, 532, 89–95. [Google Scholar] [CrossRef]
- Bagheri, H.; Babanezhad, E.; Es-haghi, A. An Aniline-Based Fiber Coating for Solid Phase Microextraction of Polycyclic Aromatic Hydrocarbons from Water Followed by Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 2007, 1152, 168–174. [Google Scholar] [CrossRef]
- Mousavi, M.; Noroozian, E.; Jalali-Heravi, M.; Mollahosseini, A. Optimization of Solid-Phase Microextraction of Volatile Phenols in Water by a Polyaniline-Coated Pt-Fiber Using Experimental Design. Anal. Chim. Acta 2007, 581, 71–77. [Google Scholar] [CrossRef]
- Ghassempour, A.; Najafi, N.M.; Mehdinia, A.; Davarani, S.S.H.; Fallahi, M.; Nakhshab, M. Analysis of Anatoxin-a Using Polyaniline as a Sorbent in Solid-Phase Microextraction Coupled to Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 2005, 1078, 120–127. [Google Scholar] [CrossRef]
- Li, X.; Zhong, M.; Chen, J. Electrodeposited Polyaniline as a Fiber Coating for Solid-Phase Microextraction of Organochlorine Pesticides from Water. J. Sep. Sci. 2008, 31, 2839–2845. [Google Scholar] [CrossRef]
- Li, X.; Zhong, M.; Xu, S.; Sun, C. Determination of Phthalates in Water Samples Using Polyaniline-Based Solid-Phase Microextraction Coupled with Gas Chromatography. J. Chromatogr. A 2006, 1135, 101–108. [Google Scholar] [CrossRef]
- Li, X.; Chen, J.; Du, L. Analysis of Chloro- and Nitrobenzenes in Water by a Simple Polyaniline-Based Solid-Phase Microextraction Coupled with Gas Chromatography. J. Chromatogr. A 2007, 1140, 21–28. [Google Scholar] [CrossRef]
- Ma, M.; Wang, H.; Zhen, Q.; Zhang, M.; Du, X. Development of Nitrogen-Enriched Carbonaceous Material Coated Titania Nanotubes Array as a Fiber Coating for Solid-Phase Microextraction of Ultraviolet Filters in Environmental Water. Talanta 2017, 167, 118–125. [Google Scholar] [CrossRef]
- Bu, Y.; Feng, J.; Wang, X.; Tian, Y.; Sun, M.; Luo, C. In Situ Hydrothermal Growth of Polyaniline Coating for In-Tube Solid-Phase Microextraction towards Ultraviolet Filters in Environmental Water Samples. J. Chromatogr. A 2017, 1483, 48–55. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Zhang, J.; Sun, C. Determination of 16 Polycyclic Aromatic Hydrocarbons in Water Using Fluorinated Polyaniline-Based Solid-Phase Microextraction Coupled with Gas Chromatography. Environ. Monit. Assess. 2012, 184, 4345–4353. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Zhang, J.; Xu, S.; Yang, S.; Sun, C. A Novel Fluorinated Polyaniline-Based Solid-Phase Microextraction Coupled with Gas Chromatography for Quantitative Determination of Polychlorinated Biphenyls in Water Samples. Anal. Chim. Acta 2009, 646, 78–84. [Google Scholar] [CrossRef]
- Huang, M.; Jiang, G.; Cai, Y. Electrochemical Preparation of Composite Polyaniline Coating and Its Application in the Determination of Bisphenol A, 4-n-Nonylphenol, 4-Tert-Octylphenol Using Direct Solid Phase Microextraction Coupled with High Performance Liquid Chromatography. J. Sep. Sci. 2005, 28, 2218–2224. [Google Scholar] [CrossRef] [Green Version]
- Masoumi, V.; Mohammadi, A.; Khoshayand, M.R.; Ansari, M. Application of Polyaniline–Multiwalled Carbon Nanotubes Composite Fiber for Determination of Benzaldehyde in Injectable Pharmaceutical Formulations by Solid-Phase Microextraction GC–FID Using Experimental Design. J. Anal. Chem. 2017, 72, 264–271. [Google Scholar] [CrossRef]
- Li, J.; Xu, H. A Novel Polyaniline/Polypyrrole/Graphene Oxide Fiber for the Determination of Volatile Organic Compounds in Headspace Gas of Lung Cell Lines. Talanta 2017, 167, 623–629. [Google Scholar] [CrossRef]
- Khajeamiri, A.R.; Kobarfard, F.; Bayandori Moghaddam, A. Application of Polyaniline and Polyaniline/Multiwalled Carbon Nanotubes-Coated Fibers for Analysis of Ecstasy. Chem. Eng. Technol. 2012, 35, 1515–1519. [Google Scholar] [CrossRef]
- Mehdinia, A.; Fazlollah Mousavi, M. Enhancing Extraction Rate in Solid-Phase Microextraction by Using Nano-Structured Polyaniline Coating. J. Sep. Sci. 2008, 31, 3565–3572. [Google Scholar] [CrossRef]
- Dalvand, K.; Ghiasvand, A. Simultaneous Analysis of PAHs and BTEX in Soil by a Needle Trap Device Coupled with GC-FID and Using Response Surface Methodology Involving Box-Behnken Design. Anal. Chim. Acta 2019, 1083, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Gholivand, M.B.; Abolghasemi, M.M.; Fattahpour, P. Highly Porous Silica-Polyaniline Nanocomposite as a Novel Solid-Phase Microextraction Fiber Coating. J. Sep. Sci. 2012, 35, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Vickackaite, V.; Ciuvasovaite, V. Polyaniline-Polypyrrole Coating for Solid Phase Microextraction. Open Chem. 2007, 5, 727–738. [Google Scholar] [CrossRef]
- Alizadeh, M.; Pirsa, S.; Faraji, N. Determination of Lemon Juice Adulteration by Analysis of Gas Chromatography Profile of Volatile Organic Compounds Extracted with Nano-Sized Polyester-Polyaniline Fiber. Food Anal. Methods 2017, 10, 2092–2101. [Google Scholar] [CrossRef]
- Huang, S.; Xu, J.; Tao, X.; Chen, X.; Zhu, F.; Wang, Y.; Jiang, R.; Ouyang, G. Fabrication of Polyaniline/Silver Composite Coating as a Dual-Functional Platform for Microextraction and Matrix-Free Laser Desorption/Ionization. Talanta 2017, 172, 155–161. [Google Scholar] [CrossRef]
- Huang, M.; Jiang, G.; Zhao, Z.; Liu, J. A Novel Fiber Coating for Solid Phase Microextraction and Its Application for the Extraction of N-Alkane from Aqueous Sample. J. Environ. Sci. China 2005, 17, 930–932. [Google Scholar]
- Mehdinia, A.; Khani, H.; Mozaffari, S. Fibers Coated with a Graphene-Polyaniline Nanocomposite for the Headspace Solid-Phase Microextraction of Organochlorine Pesticides from Seawater Samples. Microchim. Acta 2014, 181, 89–95. [Google Scholar] [CrossRef]
- Sereshti, H.; Karami, F.; Nouri, N.; Farahani, A. Electrochemically Controlled Solid Phase Microextraction Based on a Conductive Polyaniline-Graphene Oxide Nanocomposite for Extraction of Tetracyclines in Milk and Water. J. Sci. Food Agric. 2021, 101, 2304–2311. [Google Scholar] [CrossRef]
- Razmi, H.; Manafi Khoshmanesh, S. An in Situ Electrochemical Fabrication of Layer by Layer Graphenized Graphite Polyaniline as a Stable Solid-Phase Microextraction Fiber Coating for Trace Environmental Analysis. J. Sep. Sci. 2019, 42, 1364–1373. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Xu, H. Development of a Novel Graphene/Polyaniline Electrodeposited Coating for on-Line in-Tube Solid Phase Microextraction of Aldehydes in Human Exhaled Breath Condensate. J. Chromatogr. A 2015, 1395, 23–31. [Google Scholar] [CrossRef]
- Ghiasvand, A.; Dowlatshah, S.; Nouraei, N.; Heidari, N.; Yazdankhah, F. A Solid-Phase Microextraction Platinized Stainless Steel Fiber Coated with a Multiwalled Carbon Nanotube-Polyaniline Nanocomposite Film for the Extraction of Thymol and Carvacrol in Medicinal Plants and Honey. J. Chromatogr. A 2015, 1406, 87–93. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, B.; Dang, X.; Zheng, D.; Ai, Y.; Chen, H. A Nanocomposite Consisting of Etched Multiwalled Carbon Nanotubes, Amino-Modified Metal-Organic Framework UiO-66 and Polyaniline for Preconcentration of Polycyclic Aromatic Hydrocarbons Prior to Their Determination by HPLC. Microchim. Acta 2020, 187, 78. [Google Scholar] [CrossRef]
- Chen, T.; Xu, H. In Vivo Investigation of Pesticide Residues in Garlic Using Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry. Anal. Chim. Acta 2019, 1090, 72–81. [Google Scholar] [CrossRef]
- Mehdinia, A.; Asiabi, M.; Jabbari, A.; Kalaee, M.-R. Preparation and Evaluation of Solid-Phase Microextraction Fiber Based on Nano-Structured Copolymer of Aniline and m-Amino Benzoic Acid Coating for the Analysis of Fatty Acids in Zooplanktons. J. Chromatogr. A 2010, 1217, 7642–7647. [Google Scholar] [CrossRef]
- Zeng, J.; Zhao, C.; Chong, F.; Cao, Y.; Subhan, F.; Wang, Q.; Yu, J.; Zhang, M.; Luo, L.; Ren, W.; et al. Oriented ZnO Nanorods Grown on a Porous Polyaniline Film as a Novel Coating for Solid-Phase Microextraction. J. Chromatogr. A 2013, 1319, 21–26. [Google Scholar] [CrossRef]
- Mehdinia, A.; Mohammadi, A.A.; Davarani, S.S.H.; Banitaba, M.H. Application of Self-Assembled Monolayers in the Preparation of Solid-Phase Microextraction Coatings. Chromatographia 2011, 74, 421. [Google Scholar] [CrossRef]
- Qiu, J.; Chen, G.; Liu, S.; Zhang, T.; Wu, J.; Wang, F.; Xu, J.; Liu, Y.; Zhu, F.; Ouyang, G. Bioinspired Polyelectrolyte-Assembled Graphene-Oxide-Coated C18 Composite Solid-Phase Microextraction Fibers for In Vivo Monitoring of Acidic Pharmaceuticals in Fish. Anal. Chem. 2016, 88, 5841–5848. [Google Scholar] [CrossRef]
- Sun, M.; Feng, J.; Ji, X.; Li, C.; Han, S.; Sun, M.; Feng, Y.; Feng, J.; Sun, H. Polyaniline/Titanium Dioxide Nanorods Functionalized Carbon Fibers for in-Tube Solid-Phase Microextraction of Phthalate Esters Prior to High Performance Liquid Chromatography-Diode Array Detection. J. Chromatogr. A 2021, 1642, 462003. [Google Scholar] [CrossRef]
- Amoli, H.S.; Yamini, Y.; Darmani, H. Polyoxomolybdate368 /Polyaniline Nanocomposite as a Novel Fiber for Solid-Phase Microextraction of Antidepressant Drugs in Biological Samples. J. Sep. Sci. 2020, 43, 2636–2645. [Google Scholar] [CrossRef]
- Esfandiarnejad, R.; Sereshti, H.; Farahani, A. Polyaniline Immobilized on Polycaprolactam Nanofibers as a Sorbent in Electrochemically Controlled Solid-Phase Microextraction Coupled with HPLC for the Determination of Angiotensin II Receptor Antagonists in Human Blood Plasma. Anal. Bioanal. Chem. 2019, 411, 3631–3640. [Google Scholar] [CrossRef]
- Jian, N.; Zhao, M.; Liang, S.; Cao, J.; Wang, C.; Xu, Q.; Li, J. High-Throughput and High-Efficient Micro-Solid Phase Extraction Based on Sulfonated-Polyaniline/Polyacrylonitrile Nanofiber Mats for Determination of Fluoroquinolones in Animal-Origin Foods. J. Agric. Food Chem. 2019, 67, 6892–6901. [Google Scholar] [CrossRef] [PubMed]
- Djozan, D.; Bahar, S. Solid-Phase Microextraction of Aliphatic Alcohols Based on Polyaniline Coated Fibers. Chromatographia 2004, 59, 95–99. [Google Scholar] [CrossRef]
- Djozan, D.; Bahar, S. Monitoring of Phenol and 4-Chlorophenol in Petrochemical Sewage Using Solid-Phase Microextraction and Capillary Gas Chromatography. Chromatographia 2003, 58, 637–642. [Google Scholar] [CrossRef]
- Dziedzic, D.; Nawała, J.; Gordon, D.; Dawidziuk, B.; Popiel, S. Nanostructured Polyaniline SPME Fiber Coating for Chemical Warfare Agents Analysis. Anal. Chim. Acta 2022, 1202, 339649. [Google Scholar] [CrossRef] [PubMed]
- Ghiasvand, A.R.; Yazdankhah, F. Single-Step Reinforced Microextraction of Polycyclic Aromatic Hydrocarbons from Soil Samples Using an inside Needle Capillary Adsorption Trap with Electropolymerized Aniline/Multi-Walled Carbon Nanotube Sorbent. J. Chromatogr. A 2017, 1487, 47–53. [Google Scholar] [CrossRef]
- Hwang, Y.; Lee, Y.; Ahn, S.; Bae, S. Electrochemically Polyaniline-Coated Microextraction Needle for Phthalates in Water. Anal. Sci. Technol. 2020, 33, 76–85. [Google Scholar] [CrossRef]
- Bagheri, H.; Aghakhani, A. Polyaniline-Nylon-6 Electrospun Nanofibers for Headspace Adsorptive Microextraction. Anal. Chim. Acta 2012, 713, 63–69. [Google Scholar] [CrossRef]
- Hoseinpour Kouhestany, R.; Tamaddon, A.; Ahmad Panahi, H.; Afshar Ebrahimi, A.; Amiri, R. Electrophoretic Deposition of Polyaniline Nanofibers on a Stainless Steel Wire as an Adsorbent for Determination of Tamoxifen by SPME/GC-FID in Urine Samples. Biomed. Chromatogr. BMC 2022, 36, e5284. [Google Scholar] [CrossRef]
- Mehdinia, A.; Roohi, F.; Jabbari, A.; Manafi, M.R. Self-Doped Polyaniline as New Polyaniline Substitute for Solid-Phase Microextraction. Anal. Chim. Acta 2011, 683, 206–211. [Google Scholar] [CrossRef]
- Abolghasemi, M.M.; Parastari, S.; Yousefi, V. Microextraction of Phenolic Compounds Using a Fiber Coated with a Polyaniline-Montmorillonite Nanocomposite. Microchim. Acta 2015, 182, 273–280. [Google Scholar] [CrossRef]
- Bagheri, H.; Javanmardi, H.; Abbasi, A.; Banihashemi, S. A Metal Organic Framework-Polyaniline Nanocomposite as a Fiber Coating for Solid Phase Microextraction. J. Chromatogr. A 2016, 1431, 27–35. [Google Scholar] [CrossRef]
- Du, W.; Zhao, F.; Zeng, B. Novel Multiwalled Carbon Nanotubes–Polyaniline Composite Film Coated Platinum Wire for Headspace Solid-Phase Microextraction and Gas Chromatographic Determination of Phenolic Compounds. J. Chromatogr. A 2009, 1216, 3751–3757. [Google Scholar] [CrossRef]
- Rong, X.; Zhao, F.; Zeng, B. Electrochemical Preparation of Poly(p-Phenylenediamine-Co-Aniline) Composite Coating on a Stainless Steel Wire for the Headspace Solid-Phase Microextraction and Gas Chromatographic Determination of Some Derivatives of Benzene. Talanta 2012, 98, 265–271. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, M.; Zhao, F.; Zeng, B. Electrochemical Preparation of Polyaniline–Polypyrrole Solid-Phase Microextraction Coating and Its Application in the GC Determination of Several Esters. Talanta 2013, 117, 146–151. [Google Scholar] [CrossRef]
- Gao, Z.; Li, W.; Liu, B.; Liang, F.; He, H.; Yang, S.; Sun, C. Nano-Structured Polyaniline-Ionic Liquid Composite Film Coated Steel Wire for Headspace Solid-Phase Microextraction of Organochlorine Pesticides in Water. J. Chromatogr. A 2011, 1218, 6285–6291. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, M.; Ma, Y.; Zeng, B. Electrochemical Preparation of Polyaniline–Ionic Liquid Based Solid Phase Microextraction Fiber and Its Application in the Determination of Benzene Derivatives. J. Chromatogr. A 2011, 1218, 387–391. [Google Scholar] [CrossRef]
- Kim, S.; Bae, S. In Vitro and In Vivo Human Body Odor Analysis Method Using GO:PANI/ZNRs/ZIF-8 Adsorbent Followed by GC/MS. Mol. Basel Switz. 2022, 27, 4795. [Google Scholar] [CrossRef]
- Luo, X.; Weng, Q.; Li, J. A New Composite of O-Aminobenzene Sulfonic Acid Self-Doped Polyaniline and Multi-Walled Carbon Nanotubes as a Fiber Coating for Solid-Phase Microextraction Gas Chromatography. Chromatographia 2022, 85, 689–697. [Google Scholar] [CrossRef]
- Hajializadeh, A.; Ansari, M.; Foroughi, M.M.; Kazemipour, M. Ultrasonic Assisted Synthesis of a Novel Ternary Nanocomposite Based on Carbon Nanotubes/Zeolitic Imidazolate Framework-67/Polyaniline for Solid-Phase Microextraction of Organic Pollutants. Microchem. J. 2020, 157, 105008. [Google Scholar] [CrossRef]
- Ghaedrahmati, L.; Ghiasvand, A.; Heidari, N. Headspace Solid-Phase Microextraction Sampling of Endogenous Aldehydes in Biological Fluids Using a Magnetic Metal-Organic Framework/Polyaniline Nanocomposite. J. Sep. Sci. 2021, 44, 1130–1139. [Google Scholar] [CrossRef]
- Ghalichi Zave, Z.; Bahrami, A.; Ghorbani Shahna, F.; Farhadian, M. Application of a Needle Trap Device Packed with XAD-2 Polyaniline Composite for Sampling Naphthalene and Phenanthrene in Air. J. Chromatogr. A 2019, 1602, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ścigalski, P.; Kosobucki, P. Recent Materials Developed for Dispersive Solid Phase Extraction. Molecules 2020, 25, 4869. [Google Scholar] [CrossRef] [PubMed]
- Sowa, I.; Wójciak-Kosior, M.; Strzemski, M.; Sawicki, J.; Staniak, M.; Dresler, S.; Szwerc, W.; Mołdoch, J.; Latalski, M. Silica Modified with Polyaniline as a Potential Sorbent for Matrix Solid Phase Dispersion (MSPD) and Dispersive Solid Phase Extraction (d-SPE) of Plant Samples. Materials 2018, 11, 467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnnok, P.; Patdhanagul, N.; Burakham, R. Dispersive Solid-Phase Extraction Using Polyaniline-Modified Zeolite NaY as a New Sorbent for Multiresidue Analysis of Pesticides in Food and Environmental Samples. Talanta 2017, 164, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Hemmati, M.; Rajabi, M.; Asghari, A. Efficient and Clean Pre-Concentration of Ultra-Trace Calcium Channel Blockers from Biological Matrices via a Hyphenated Procedure of Two Sequential Dispersive Solid/Liquid Phase Microextractions. Anal. Chim. Acta 2017, 960, 138–150. [Google Scholar] [CrossRef]
- Alizadeh, R.; Mashalavi, B.; Yeganeh Faal, A.; Seidi, S. Development of Ultrasound Assisted Dispersive Micro Solid Phase Extraction Based on CuO Nanoplate-Polyaniline Composite as a New Sorbent for Insecticides Analysis in Wheat Samples. Microchem. J. 2021, 168, 106422. [Google Scholar] [CrossRef]
- Otoukesh, M.; Es’haghi, Z.; Feizy, J.; Nerin, C. Graphene Oxide/ Layered Double Hydroxides@ Sulfonated Polyaniline: A Sorbent for Ultrasonic Assisted Dispersive Solid Phase Extraction of Phthalates in Distilled Herbal Beverages. J. Chromatogr. A 2020, 1625, 461307. [Google Scholar] [CrossRef]
- Mehdinia, A.; Roohi, F.; Jabbari, A. Rapid Magnetic Solid Phase Extraction with in Situ Derivatization of Methylmercury in Seawater by Fe3O4/Polyaniline Nanoparticle. J. Chromatogr. A 2011, 1218, 4269–4274. [Google Scholar] [CrossRef]
- Lai, Z.; Zhang, M.; Zhou, J.; Chen, T.; Li, D.; Shen, X.; Liu, J.; Zhou, J.; Li, Z. Fe3O4@PANI: A Magnetic Polyaniline Nanomaterial for Highly Efficient and Handy Enrichment of Intact N-Glycopeptides. Analyst 2021, 146, 4261–4267. [Google Scholar] [CrossRef]
- Conde-Díaz, A.; Rodríguez-Ramos, R.; Socas-Rodríguez, B.; Salazar-Carballo, P.Á.; Rodríguez-Delgado, M.Á. Application of Polyaniline-Based Magnetic-Dispersive-Solid-Phase Microextraction Combined with Liquid Chromatography Tandem Mass Spectrometry for the Evaluation of Plastic Migrants in Food Matrices. J. Chromatogr. A 2022, 1670, 462988. [Google Scholar] [CrossRef]
- Wang, H.; Wang, P.; Zhao, X.; Ye, C.; Zheng, X.; Cao, W. Determination of Anabolic Androgenic Steroids in Dietary Supplements and External Drugs by Magnetic Solid-Phase Extraction Combined with High-Performance Liquid Chromatography–Tandem Mass Spectrometry. J. Sep. Sci. 2021, 44, 1939–1949. [Google Scholar] [CrossRef]
- He, M.; Su, S.; Chen, B.; Hu, B. Simultaneous Speciation of Inorganic Selenium and Tellurium in Environmental Water Samples by Polyaniline Functionalized Magnetic Solid Phase Extraction Coupled with ICP-MS Detection. Talanta 2020, 207, 120314. [Google Scholar] [CrossRef]
- Iqbal, M.; Shah, J.; Jan, M.R.; Zeeshan, M. Mixed Hemimicelles Dispersive Solid Phase Extraction Using Polyaniline Coated Magnetic Nanoparticles for Chlorophenols from Water Samples. J. Inorg. Organomet. Polym. Mater. 2020, 30, 1430–1437. [Google Scholar] [CrossRef]
- Niu, P.; Liang, X.; Lu, X.; Wang, S.; Li, Y.; Wang, L.; Guo, Y. Preparation of Magnetic Carbonized Polyaniline Nanotube and Its Adsorption Behaviors of Xanthene Colorants in Beverage and Fish Samples. J. Chromatogr. A 2019, 1605, 460369. [Google Scholar] [CrossRef]
- Meng, J.; Shi, C.; Wei, B.; Yu, W.; Deng, C.; Zhang, X. Preparation of Fe3O4@C@PANI Magnetic Microspheres for the Extraction and Analysis of Phenolic Compounds in Water Samples by Gas Chromatography–Mass Spectrometry. J. Chromatogr. A 2011, 1218, 2841–2847. [Google Scholar] [CrossRef]
- Seidi, S.; Majd, M. Polyaniline-Functionalized Magnetic Graphene Oxide for Dispersive Solid-Phase Extraction of Cr(VI) from Environmental Waters Followed by Graphite Furnace Atomic Absorption Spectrometry. J. Iran. Chem. Soc. 2017, 14, 1195–1206. [Google Scholar] [CrossRef]
- Manousi, N.; Deliyanni, E.A.; Rosenberg, E.; Zachariadis, G.A. Ultrasound-Assisted Magnetic Solid-Phase Extraction of Polycyclic Aromatic Hydrocarbons and Nitrated Polycyclic Aromatic Hydrocarbons from Water Samples with a Magnetic Polyaniline Modified Graphene Oxide Nanocomposite. J. Chromatogr. A 2021, 1645, 462104. [Google Scholar] [CrossRef]
- Aboobakri, E.; Jahani, M. Graphene Oxide/Fe3O4/Polyaniline Nanocomposite as an Efficient Adsorbent for the Extraction and Preconcentration of Ultra-Trace Levels of Cadmium in Rice and Tea Samples. Res. Chem. Intermed. 2020, 46, 5181–5198. [Google Scholar] [CrossRef]
- Zeeshan, M.; Shah, J.; Jan, M.R.; Iqbal, M. Removal of Bisphenol-A from Aqueous Samples Using Graphene Oxide Assimilated Magnetic Silica Polyaniline Composite. J. Inorg. Organomet. Polym. Mater. 2021, 31, 2073–2082. [Google Scholar] [CrossRef]
- Asgharinezhad, A.A.; Esmaeilpour, M.; Siavoshani, A.Y. Extraction and Preconcentration of Ni(II), Pb(II), and Cd(II) Ions Using a Nanocomposite of the Type Fe3O4@SiO2@polypyrrole-Polyaniline. RSC Adv. 2022, 12, 19108–19114. [Google Scholar] [CrossRef] [PubMed]
- Davari, S.D.; Rabbani, M.; Basti, A.A.; Koohi, M.K. Determination of Furfurals in Baby Food Samples after Extraction by a Novel Functionalized Magnetic Porous Carbon. RSC Adv. 2022, 12, 21181–21190. [Google Scholar] [CrossRef]
- Klongklaew, P.; Kanatharana, P.; Bunkoed, O. Development of Doubly Porous Composite Adsorbent for the Extraction of Fluoroquinolones from Food Samples. Food Chem. 2020, 309, 125685. [Google Scholar] [CrossRef] [PubMed]
- Elci, S.G. A Magnetic Solid-Phase Extraction Method Using Fe3O4@coPANI-PTH for Microsample Injection System-Flame Atomic Absorption Spectrometric Determination of Nickel and Copper in Soft Drinks and Spice Samples. Int. J. Environ. Anal. Chem. 2022, 102, 2038–2052. [Google Scholar] [CrossRef]
- Elci, S.G. Determination of Cobalt in Food by Magnetic Solid-Phase Extraction (MSPE) Preconcentration by Polyaniline (PANI) and Polythiophene (PTH) Coated Magnetic Nanoparticles (MNPs) and Microsample Injection System—Flame Atomic Absorption Spectrometry (MIS-FAAS). Instrum. Sci. Technol. 2021, 49, 258–275. [Google Scholar] [CrossRef]
- Chen, D.; Ma, S.; Zhang, X.; Wang, X.; Gao, M.; Li, J.; Wang, H. Enhanced Extraction of Organophosphorus Pesticides from Fruit Juices Using Magnetic Effervescent Tablets Composed of the NiFe2O4@SiO2@PANI-IL Nanocomposites. RSC Adv. 2021, 11, 1668–1678. [Google Scholar] [CrossRef]
- Farahmandi, M.; Yamini, Y.; Baharfar, M.; Karami, M. Dispersive Magnetic Solid Phase Microextraction on Microfluidic Systems for Extraction and Determination of Parabens. Anal. Chim. Acta 2021, 1188, 339183. [Google Scholar] [CrossRef]
- Ghorbani, M.; Chamsaz, M.; Rounaghi, G.H.; Aghamohammadhasani, M.; Seyedin, O.; Lahoori, N.A. Development of a Novel Ultrasonic-Assisted Magnetic Dispersive Solid-Phase Microextraction Method Coupled with High Performance Liquid Chromatography for Determination of Mirtazapine and Its Metabolites in Human Urine and Water Samples Employing Experimental Design. Anal. Bioanal. Chem. 2016, 408, 7719–7729. [Google Scholar] [CrossRef]
- Shirani, M.; Akbari-adergani, B.; Rashidi Nodeh, H.; Shahabuddin, S. Ultrasonication-Facilitated Synthesis of Functionalized Graphene Oxide for Ultrasound-Assisted Magnetic Dispersive Solid-Phase Extraction of Amoxicillin, Ampicillin, and Penicillin G. Microchim. Acta 2020, 187, 634. [Google Scholar] [CrossRef]
- Rajabi, M.; Mollakazemi, Z.; Hemmati, M.; Arghavani-Beydokhti, S. CO2-Effervescence Assisted Dispersive Micro Solid-Phase Extraction Based on a Magnetic Layered Double Hydroxide Modified with Polyaniline and a Surfactant for Efficient Pre-Concentration of Heavy Metals in Cosmetic Samples. Anal. Methods 2020, 12, 4867–4877. [Google Scholar] [CrossRef]
- Wang, A.; Hu, L.; Liu, J.; Tian, M.; Yang, L. Polyaniline-Coated Core-Shell Silica Microspheres-Based Dispersive-Solid Phase Extraction for Detection of Benzophenone-Type UV Filters in Environmental Water Samples. Environ. Adv. 2021, 3, 100037. [Google Scholar] [CrossRef]
- Sadkhan, M.; Eftekhari, M.; Gheibi, M.; Yazdi, M.; Emrani, N. Synthesis of Polyaniline-Coated Titanium Oxide Nanoparticles for Preconcentration of Cobalt (II) Followed by Electrothermal Atomic Absorption Spectrometry. J. Iran. Chem. Soc. 2019, 17, 177–186. [Google Scholar] [CrossRef]
- Asgharinezhad, A.A.; Ebrahimzadeh, H.; Mirbabaei, F.; Mollazadeh, N.; Shekari, N. Dispersive Micro-Solid-Phase Extraction of Benzodiazepines from Biological Fluids Based on Polyaniline/Magnetic Nanoparticles Composite. Anal. Chim. Acta 2014, 844, 80–89. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, Y.; Ren, J.; Ji, L.; Zhang, Q. Electromagnetic Dispersive Solid-Phase Extraction Based on Polyaniline-Coated Magnetite/Silica Materials for the Determination of Sudan Red I in Drinks. J. Sep. Sci. 2021, 44, 3279–3286. [Google Scholar] [CrossRef]
- Su, S.; Chen, B.; He, M.; Hu, B.; Xiao, Z. Determination of Trace/Ultratrace Rare Earth Elements in Environmental Samples by ICP-MS after Magnetic Solid Phase Extraction with Fe3O4@SiO2@polyaniline–Graphene Oxide Composite. Talanta 2014, 119, 458–466. [Google Scholar] [CrossRef]
- Yang, X.; Qiao, K.; Ye, Y.; Yang, M.; Li, J.; Gao, H.; Zhang, S.; Zhou, W.; Lu, R. Facile Synthesis of Multifunctional Attapulgite/Fe3O4/Polyaniline Nanocomposites for Magnetic Dispersive Solid Phase Extraction of Benzoylurea Insecticides in Environmental Water Samples. Anal. Chim. Acta 2016, 934, 114–121. [Google Scholar] [CrossRef]
- Suo, L.; Zhao, J.; Dong, X.; Gao, X.; Li, X.; Xu, J.; Lu, X.; Zhao, L. Functionalization of a SiO2-Coated Magnetic Graphene Oxide Composite with Polyaniline–Polypyrrole for Magnetic Solid Phase Extraction of Ultra-Trace Cr(III) and Pb(II) in Water and Food Samples Using a Box–Behnken Design. New J. Chem. 2019, 43, 12126–12136. [Google Scholar] [CrossRef]
- Saghafi, A.; Ghorbani, M.; Pakseresht, M.; Shams, A. Synthesis and Development of Novel Magnetic Polymeric Sorbent to Simultaneous Extraction of Three Anti-Cancers Using Dispersive Micro Solid Phase Extraction Procedure in Biological and Water Samples. Microchem. J. 2022, 183, 108047. [Google Scholar] [CrossRef]
- Shahriman, M.S.; Ramachandran, M.R.; Zain, N.N.M.; Mohamad, S.; Manan, N.S.A.; Yaman, S.M. Polyaniline-Dicationic Ionic Liquid Coated with Magnetic Nanoparticles Composite for Magnetic Solid Phase Extraction of Polycyclic Aromatic Hydrocarbons in Environmental Samples. Talanta 2018, 178, 211–221. [Google Scholar] [CrossRef]
- Gao, Q.; Zheng, H.-B.; Luo, D.; Ding, J.; Feng, Y.-Q. Facile Synthesis of Magnetic One-Dimensional Polyaniline and Its Application in Magnetic Solid Phase Extraction for Fluoroquinolones in Honey Samples. Anal. Chim. Acta 2012, 720, 57–62. [Google Scholar] [CrossRef]
- Mokhtar, H.I.; Abdel-Salam, R.A.; Hadad, G.M. A Nanocomposite of Silica Coated Magnetite Nanoparticles and Aniline-Anthranilic Acid Co-Polymeric Nanorods with Improved Stability and Selectivity for Fluoroquinolones Dispersive Micro Solid Phase Extraction. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2022, 1206, 123350. [Google Scholar] [CrossRef] [PubMed]
- Gamonchuang, J.; Burakham, R. Amino-Based Magneto-Polymeric-Modified Mixed Iron Hydroxides for Magnetic Solid Phase Extraction of Phenol Residues in Environmental Samples. J. Chromatogr. A 2021, 1643, 462071. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Pang, W.; Chen, M.; Wu, Y.; Zhang, H. Polyaniline-Modified Magnetic Halloysite Nanotube-Based Magnetic Micro-Solid-Phase Extraction for the Analysis of Polycyclic Aromatic Hydrocarbons in Beer Samples by Gas Chromatography-Mass Spectrometry. Food Anal. Methods 2021, 14, 761–772. [Google Scholar] [CrossRef]
- Dutra, F.V.A.; Pires, B.C.; Coelho, M.M.; Costa, R.A.; Francisco, C.S.; Lacerda, V.; Borges, K.B. Restricted Access Macroporous Magnetic Polyaniline for Determination of Coumarins in Rat Plasma. Microchem. J. 2020, 153, 104490. [Google Scholar] [CrossRef]
- Baltussen, E.; Sandra, P.; David, F.; Cramers, C. Stir Bar Sorptive Extraction (SBSE), a Novel Extraction Technique for Aqueous Samples: Theory and Principles. J. Microcolumn Sep. 1999, 11, 737–747. [Google Scholar] [CrossRef]
- Lei, Y.; He, M.; Chen, B.; Hu, B. Polyaniline/Cyclodextrin Composite Coated Stir Bar Sorptive Extraction Combined with High Performance Liquid Chromatography-Ultraviolet Detection for the Analysis of Trace Polychlorinated Biphenyls in Environmental Waters. Talanta 2016, 150, 310–318. [Google Scholar] [CrossRef]
- Hu, C.; He, M.; Chen, B.; Hu, B. Simultaneous Determination of Polar and Apolar Compounds in Environmental Samples by a Polyaniline/Hydroxyl Multi-Walled Carbon Nanotubes Composite-Coated Stir Bar Sorptive Extraction Coupled with High Performance Liquid Chromatography. J. Chromatogr. A 2015, 1394, 36–45. [Google Scholar] [CrossRef]
- Fan, W.; He, M.; You, L.; Chen, B.; Hu, B. Spiral Stir Bar Sorptive Extraction with Polyaniline-Polydimethylsiloxane Sol-Gel Packings for the Analysis of Trace Estrogens in Environmental Water and Animal-Derived Food Samples. J. Sep. Sci. 2020, 43, 1137–1144. [Google Scholar] [CrossRef]
- Sowa, I.; Zajdel, D.; Kocjan, R.; Pizoń, M.; Wójciak-Kosior, M. Silica Gel Modified with Polyaniline as a Stationary Phase in the Ion Chromatography of Nitrate(III) and Nitrate(V) Ions. Acta Chromatogr. 2013, 25, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Sowa, I.; Wójciak-Kosior, M.; Drączkowski, P.; Strzemski, M.; Kocjan, R. Synthesis and Properties of a Newly Obtained Sorbent Based on Silica Gel Coated with a Polyaniline Film as the Stationary Phase for Non-Suppressed Ion Chromatography. Anal. Chim. Acta 2013, 787, 260–266. [Google Scholar] [CrossRef]
- Taraba, L.; Křížek, T.; Hodek, O.; Kalíková, K.; Coufal, P. Characterization of Polyaniline-Coated Stationary Phases by Using the Linear Solvation Energy Relationship in the Hydrophilic Interaction Liquid Chromatography Mode Using Capillary Liquid Chromatography. J. Sep. Sci. 2017, 40, 677–687. [Google Scholar] [CrossRef]
- Taraba, L.; Křížek, T. Study of Polyaniline-Coated Silica Gel as a Stationary Phase in Different Modes of Capillary Liquid Chromatography. Monatshefte Für Chem.-Chem. Mon. 2017, 148, 1605–1611. [Google Scholar] [CrossRef]
- Chen, J.-K.; Yu, Y.-Y.; Xu, N.-Y.; Guo, P.; Zhang, J.-H.; Wang, B.-J.; Xie, S.-M.; Yuan, L.-M. Chiral Polyaniline Modified Metal-Organic Framework Core-Shell Composite MIL-101@c-PANI for HPLC Enantioseparation. Microchem. J. 2021, 169, 106576. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Y.; Yu, W.; Wang, C.; Li, Z.; Sun, Y.; Zhang, S.; Zhu, Y. [Preparation and characterization of polyaniline/graphene-coated anion-exchange chromatographic stationary phase]. Se Pu Chin. J. Chromatogr. 2020, 38, 458–463. [Google Scholar] [CrossRef]
- Floris, P.; Connolly, D.; White, B.; Morrin, A. Development and Characterisation of Switchable Polyaniline-Functionalised Flow-through Capillary Monoliths. RSC Adv. 2014, 4, 43934–43941. [Google Scholar] [CrossRef] [Green Version]
- Siddiq, A.; Ansari, M.O.; Mohammad, A.; Mohammad, F.; El-Desoky, G.E. Synergistic Effect of Polyaniline Modified Silica Gel for Highly Efficient Separation of Non Resolvable Amino Acids. Int. J. Polym. Mater. Polym. Biomater. 2014, 63, 277–281. [Google Scholar] [CrossRef]
- Mohammad, A.; Khan, M.; Ullah, Q.; Mohammad, F. Effective Separation of Organic Dyes Using Ionic Liquids as Green Mobile Phase and Polyaniline-Modified Silica Gel Nanocomposite-Based Thin-Layer Chromatography. J. Anal. Sci. Technol. 2017, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, A.; Khan, M.; Mobin, R.; Mohammad, F. A New Thin-Layer Chromatographic System for the Identification and Selective Separation of Brilliant Blue Food Dye: Application of a Green Solvent. JPC—J. Planar Chromatogr.-Mod. TLC 2016, 29, 446–452. [Google Scholar] [CrossRef]
- Bossi, A.; Piletsky, S.A.; Turner, A.P.F.; Righetti, P.G. Repartition Effect of Aromatic Polyaniline Coatings on the Separation of Bioactive Peptides in Capillary Electrophoresis. Electrophoresis 2002, 23, 203–208. [Google Scholar] [CrossRef]
Material | Analyte/Matrix | Method | LOD | Ref |
---|---|---|---|---|
Polyaniline (PANI) | phenol (Ph), 2,4,-dimethylPh, 2-chloroPh, 4-chloroPh, pentachloroPh/water | GC–FID | not shown (ns) | [19] |
PANI | chlorophenols/water | GC–ECD | 3 –110 ng L−1 | [18] |
PANI | polar pesticides and their degradation products/water | MEKC–DAD | 0.01–0.5 μg L−1 | [17] |
PANI nanowires | triazine, organochlorine, and organophosphorous pesticides/water | GC–MS | 0.07–0.3 ng mL−1 | [16] |
PANI on a stainless steel mesh | polycyclic aromatic hydrocarbons (PAHs)/water samples | GC–FID | 0.003–0.01 ng mL−1 | [20] |
PANI nanotubes | 2′,7′-dichlorofluorescein/aqueous solution | HPLC–FLD | 20 nM | [38] |
Silica (Si) covered with PANI | trace elements (Fe, Cu, Ni, Zn, Cd, Mn)/selected medicinal plants | HPIC–UV | 2–9 μg L−1 | [23] |
Si/PANI | oleanolic, ursolic, betulinic acid/ Salvia officinalis, Syzygium aromaticum, Origanum vulgare | HPLC–DAD | 0.11–0.14 μg mL−1 | [24] |
Si/PANI | alkaloids /Chelidonium majus extracts | HPLC–DAD | 9–17 ng mL−1 | [25] |
Si/PANI | ions (Na, K, Ca, Mg, Cu, Fe, Ni, Co, Cd, Zn, Mn, Pb)/water | HPIC–UV, AAS | 0.01–0.2 μg mL−1 | [26] |
Si/PANI (molecularly imprinted) | benzophenone-4/aqueous media | HPLC–DAD | ns | [39] |
Si/PANI modified with Acid Alizarin Violet N and Ag+ ion | nitrate, nitrite/commercially available bottled water samples | HPIC–UV | 6–10 ng mL−1 | [40] |
Ag-NPs/PANI | furosemide/urine samples | HPLC–UV | 7 μg L−1 | [34] |
PANI/polyacrylonitrile (PAN) | Sudan dyes/poultry feed | HPLC–DAD | 6–15 μgkg−1 | [31] |
PANI/PAN | non-steroidal anti-inflammatory drug residues/meat and egg | UPLC–MS/MS | 0.6–12.2 µg kg−1 | [29] |
PANI/PAN nanofiber mat | fluoroquinolones/water, urine and serum | UPLC–MS/MS | 0.016–1.52 μg L-1 | [41] |
PANI/PAN nanofiber mat | non-steroidal anti-inflammatory drugs (NSAIDs)/water | UPLC–MS | 0.2–5.0 ng L−1 | [28] |
PANI/PAN nanofiber mat | paracetamol (p), chloramphenicol (c)/pork, chicken, and beef | UHPLC–MS | 0.15–0.2 (p), 0.01 µg kg−1 (c) | [27] |
PANI semi-IPN cryogels | antibiotic residues/honey and water samples | HPLC–UV | 17–50 μg kg−1 | [33] |
PANI/multi-walled carbon nanotubes/chitosan cryogel | hydrocarbons/tea and coffee | HPLC–UV | 0.005–0.05 μg L−1 | [42] |
PANI/ styrene– divinylbenzene | Fluoxetine(f) and norfluoxetine(n)/plasma | LC–FL | 10 (f), 80 ng mL−1 (n)* | [36] |
PS-DVB / TiO2/PANI | myricetin (m) and quercetin (q)/Epipremnum aureum rhizome | HPLC–UV/Vis | 0.009 (m), 0.004 (q) μg mL−1 | [30] |
Polyurethane/PANI chip | morphine, codeine, papaverine/urine sample | UV-Vis spectrophotometry | 0.3–1.4 ng mL−1 | [37] |
2-(hexyloxy) naphthalene-sulfate doped PANI | sulfonamide/milk, and honey samples | HPLC–UV/Vis | 9.5–16.5 ng mL−1 | [35] |
Material | Analyte/Matrix | Method | LOD | Ref |
---|---|---|---|---|
PANI on a platinum wire | phenols/water samples | GC–FID | 0.69–3.7 ng mL−1 | [45] |
PANI on a platinum wire | phenol and some of its volatile derivatives/water samples | GC–FID | 1.3–12.8 ng mL−1 | [47] |
PANI on a platinum wire | polycyclic aromatic hydrocarbons (PAHs)/water samples | GC–MS | 0.1–6 pg mL−1 | [46] |
PANI on a gold wire | anatoxin-a/aqueous samples | GC–MS | 11.2 ng mL−1 | [48] |
PANI on a stainless steel wire | organochlorine pesticides (OCPs)/water samples. | GC–ECD | 0.1–1.6 ng L−1 | [49] |
PANI on a stainless steel wire | chloro- and nitrobenzenes/water samples | GC–ECD | 0.0001–0.01 μg L−1 | [51] |
PANI on a stainless steel wire | phthalates/environmental water samples | GC–FID | 0.003–10 μg L−1 | [50] |
PANI on a stainless steel wire | polychlorinated biphenyls (PCBs)/gulf sediment | GC–ECD | 0.01–0.05 ng g−1 | [60] |
PANI on basalt fibers | 2-hydroxy-4-methoxybenzophenone, phenyl salicylate and 2,4-dihydroxybenzophenone/water samples | HPLC– DAD | 0.02–0.05 μg L−1 | [53] |
Silica (Si)/PANI inside a stain-steel needle | polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene, xylenes/polluted soil samples | GC–FID | 0.001–0.1 ng g−1 | [61] |
Si-PANI fiber coating on a stainless steel wire | PAHs/aqueous samples | GC–MS | 2–20 pg mL−1 | [62] |
PANI-polypyrrole on a stainless steel wire | o-xylene, phenol, benzyl alcohol, and methyl benzoate/water samples | GC–FID | ns | [63] |
PANI on polyester fiber | volatile organic compounds (VOCs)/lemon juice | GC–FID | ns | [64] |
PANI/Ag on optical fibers | bifenthrin (pesticide)/water samples | MALDI TOF–MS | 10 ng L−1 | [65] |
PANI on titania nanotubes | UV filters/water samples | HPLC–DAD | 0.03–0.05 μg L−1 | [52] |
Fluorinated PANI on a polydimethylsiloxane (PDMS) fiber | PAHs/environmental water samples | GC–FID | 0.01–0.1 μg L−1 | [54] |
Fluorinated PANI on a stainless fiber | polychlorinated biphenyls (PCBs)/water samples | GC–µECD | 0.05–0.1 ng L−1 | [55] |
PANI doped with polydimethylsiloxane (PDMS) on a stainless steel wire | n-tridecane, n-tetradecane and n-pentadecane/aqueous samples | GC–FID | ns | [66] |
PANI doped with PEG and PDMS on a stainless steel wire | phenols (bisphenol A, 4-n-nonylphenol, and 4-tert-octylphenol)/water | HPLC–FL | 0.014–0.091 μg L−1 | [56] |
PANI/Graphene(G) on a platinum wire | organochlorine pesticides: heptachlor, aldrin, endrin and p,p’-DDT/water | GC– ECD | 3.6 – 11 ng L−1 | [67] |
PANI/graphene oxide (GO) | tetracyclines/milk and water | HPLC–UV | 0.32–7.59 μg L−1 | [68] |
Graphenized graphite/PANI | PAHs: phenanthrene, anthracene, fluoranthene, and pyrene/ water | HPLC–UV | 0.016 – 0.275 μg L−1 | [69] |
PANI/G on the internal surface of a stainless-steel tube | aldehydes/breath condensate | HPLC–UV/Vis | 0.02–0.04 nmol L−1 | [70] |
PANI/ MWCNT on stainless steel | thymol (t), carvacrol (c)/medicinal plants, honey | HPLC–UV | 0.6(t), 0.8(c) μg mL−1 | [71] |
PANI, PANI/MWCNTs on a platinum wire | methylenedioxymethamphetamine hydrochloride/water | GC–MS | ns | [59] |
PANI/MWCNT/amino-modified metal-organic framework UiO-66 UiO-66-NH2 on a stainless steel wire | polycyclic aromatic hydrocarbons (PAHs)/lake water | HPLC–UV/Vis | 10 pg mL−1 | [72] |
MWCNT/PANI/PPy/polydimethylsiloxane | pesticides (hexachlorobenzene, chlorothalonil, fipronil, chlorfenapyr)/garlic | GC–MS | 0.38 –1.90 ng g-1 | [73] |
aniline and m-amino benzoic acid on a platinum wire | saturated-fatty acids/zooplankton | GC–MS | 0.01–6.07 μg L−1 | [74] |
ZnO nanorods on a porous PANI | benzene homologues/water | GC–FID | 0.001–0.024 μg L−1 | [75] |
thiolated aniline-analog monomers on the gold surface | PAHs: phenanthrene, anthracene, pyrene, 9,10-dimethylanthracene, benzo[α]anthracene/seawater | GC–FID | 0.1–0.32 μg L−1. | [76] |
Poly(diallyldimethylammonium chloride)/GO)-coated C18 - quartz fiber PANI | acidic pharmaceuticals/fish | HPLC–MS/MS | 0.13–7.56 ng g−1 | [77] |
PANI/TiO2 carbon nanorods | phthalate esters/water samples | HPLC–DAD | 0.01–0.05 μg L−1 | [78] |
Polyoxomolybdate368/PANI on a stainless steel wire | amitriptyline, nortriptyline, doxepin/urine and blood | HPLC–UV | 0.2 ng L−1 | [79] |
Polycaprolactam/PANI on a stainless steel mesh sheet | angiotensin ΙΙ receptor antagonists (ARA-ΙΙs)/human plasma | HPLC–UV/Vis | 0.9–1.8 μg L−1 | [80] |
Sulfonated-PANI/polyacrylonitrile nanofiber mats | fluoroquinolones/various animal-origin foods | UPLC–MS | 0.012−0.06 μg·kg−1 | [81] |
Material | Analyte/Matrix | Method | LOD | Ref |
---|---|---|---|---|
PANI on a gold wire | aliphatic alcohols/gaseous samples | GC–FID | 15–75 ng mL−1 | [82] |
PANI on a gold wire | phenol and 4-chlorophenol/gaseous and aqueous samples | GC–FID | 2.8–3.0 ng mL−1 | [83] |
PANI on a stainless steel wire | organoarsenic and organophosphorus compounds/soil | GC–MS | 0.006–0.45 ng g−1 | [84] |
PANI on a stainless steel wire | tamoxifen/urine samples | GC–FID | 0.51 μg L−1 | [88] |
PANI-coated needle | phthalates/water | GC–FID | 8.00–37.48 ng | [86] |
PANI -nylon-6 as a nanofiber sheet | chlorobenzenes (CBs)/aquatic media | GC–MS | 19–33 ng L−1 | [87] |
PANI-metanilic acid on a platinum | 1,4-dioxane/water samples | GC–FID | 0.1 ng mL−1 | [89] |
Fluorinated PANI on a platinum wire | benzaldehyde/injectable pharmaceutical formulations | GC–FID | 16 ng mL−1 | [44] |
PANI-montmorillonite nanocomposite on a stainless steel wire | phenol (Ph), 4-chloroPh, 2,4-dichloroPh, 4-nitroaniline/water | GC–MS | 5–14 pg mL−1* | [90] |
Metal organic framework-PANI on a plunger needle | chlorobenzenes/aqueous samples | GC–MS | 0.1–0.2 ng L−1 | [91] |
PANI/MWCNTs on the interior surface of a stainless steel needle | PAHs/polluted soil samples | GC–FID | 0.002–0.02 ng g−1 | [85] |
MWCNTs/PANI on a platinum wire | phenol (P) derivative (2-chloroP, 2,4-dichloroP, 2-methylP, 3-methylP, 2,6-dimethylP, 2-nitroP)/water samples | GC–FID | 1.89–65.9 ng L−1 | [92] |
Poly(p-phenylenediamine-co-aniline) on a stainless steel wire | chloro- and methyl- derivatives of benzene/gaseous samples | GC–FID | 0.2–0.88 μg L−1 | [93] |
PANI–polypyrrole on a stainless steel wire | esters (i.e., methylanthranilate, ethyl-o-aminobenzoate,)/water | GC–FID | 0.05−0.38 μg L−1 | [94] |
PANI-ionic liquid (IL) (1-butyl-3-methylimidazolium hexafluorophosphate) on a steel wire | organochlorine pesticides/lake water, wastewater, sewage | GC–ECD | 0.12–0.31 ng L−1 | [95] |
PANI–IL (1-butyl-3-methylimidazolium tetrafluoroborate) on a platinum wire | benzene (B) derivatives (1,3-dimethylB, 1,2-dimethylB, 1,4-dichloroB, 1,2-dichloroB, 1,3,5-trimethylB,)/ water | GC–FID | 9.3–48.1 ng L−1 | [96] |
GO/PANI/zinc nanorods/zeolitic imidazolate framework | VOCs/human body odor | GC–MS | 4.98–14.8 ng | [97] |
o-aminobenzene sulfonic acid /MWCNTs/PANI on a stainless steel wire | 2,4-dichlorophenol/aqueous samples | GC–FID | 1.30 ng L−1 | [98] |
PANI/ MWCNTs/zeolitic imidazolate frameworks on a stainless steel wire | organic pollutants/aqueous samples | GC–FID | 0.3–0.8 ng L−1 | [99] |
metal-organic framework/PANI magnetite/on a steel wire | hexanal and heptanal/human plasma and urine samples | GC–FID | 0.001, 0.01 µg L−1 | [100] |
PANI/XAD-2 needle trap device | naphthalene, phenanthrene/air | GC–FID | 0.002–0.09 ng L−1 | [101] |
Material | Analyte/Matrix | Method | LOD | Ref |
---|---|---|---|---|
dSPE | ||||
Si/PANI | triterpenic acids/Viscum album, Ocimum basilicum | HPLC–DAD | 0.12–0.14 µg mL−1 | [104] |
Si/PANI | benzophenone-type UV filters/environmental water | CE–MS/MS | 0.6–200 pg mL−1 | [131] |
PANI/zeolite NaY | carbamate, organophosphate, sulfonylurea, pyrethroid, neonicotinoid/ food, and environmental samples | HPLC–PDA | 0.001–1.00 mg L−1 | [105] |
TiO2/PANI | Co/food and water samples | GF–AAS | 0.036 µg L−1 | [132] |
PANI-DBSNa/TiO2 | calcium channel blockers/ human plasma and urine | HPLC–DAD | 1.5–3.0 ng mL−1 | [106] |
CuO nano plate/PANI | diazinon and imidacloprid/grain | HPLC–DAD | 3 and 0.056 µg kg−1 | [107] |
GO/layered double hydroxides/sulfonated PANI | phthalate esters/drinking water, herbal beverages | GC–MS | 0.06–0.3 ng mL−1 | [108] |
magnetic | ||||
Fe3O4/PANI | parabens/fruit juice, sunscreen, and urine samples | HPLC–UV | 3.0–25.0 μg L−1 | [127] |
Fe3O4/PANI | benzodiazepines: lorazepam, nitrazepam/urine and plasma | HPLC–UV | 0.2–2.0 μg L−1 | [133] |
Fe3O4/PANI | N-glycopeptides/standard protein | MALDI–MS | 50 fmol | [110] |
Fe3O4/PANI | plastic migrants/jelly samples | HPLC–MS | 10.6–17.1 ng L−1* | [111] |
Fe3O4/C/PANI | xanthene colorants: erythrosine B, phloxine B, rhodamine B/beverage, fish | HPLC–UV/Vis | 0.1–0.5 μg L−1 | [115] |
Fe3O4/C/PANI | phenol (Ph), 2,4-dichloroPh, 2,4,5-trichloroPh, pentachloroPh bisphenol A/water | GC–MS | 2.52–29.7 ng mL−1* | [116] |
Fe3O4/SiO2/PANI | sudan red I/drinks | HPLC–UV/Vis | 0.001 mg L−1 | [134] |
Fe3O4/SiO2/PANI | anabolic androgenic steroids /dietary supplements and external drugs | HPLC–MS | 0.001–0.02 μg L−1 | [112] |
Fe3O4/SiO2/PANI | Se, Te/environmental water samples | ICP–MS | 5.3 and 1.2 pg mL−1 | [113] |
Fe3O4/SiO2/PANI | chloroPh (2-chloroPh, 4-chloroPH, 2,4-dichloroPh, 2,4,6-trichloropH)/water | HPLC–UV | 0.32–0.6 µg L−1 | [114] |
Fe3O4/GO (graphene oxide)/PANI | polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs/water | GC–MS | 0.01–0.11 ng mL−1 | [118] |
Fe3O4/GO/PANI | Cd/tea and rice samples | ET–AAS | 3.6 ng L−1 | [119] |
GO/PANI | mirtazapine and its metabolites/human urine and water | HPLC–DAD | 0.4–1.1 ng mL–1 | [128] |
GO/PANI | Cr(IV)/environmental samples | GF–AAS | 5.0 ng L−1 | [117] |
Fe3O4/SiO2/PANI/GO | Bisphenol-A/water samples | UV–Vis | ns | [120] |
Fe3O4/SiO2/PANI/GO | Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu /tea leaves, water | ICP–MS | 0.04–1.49 ng L−1 | [135] |
Fe3O4/SiO2/polypyrrole(PPy)/PANI | Ni, Cd, Pb/food samples | FAAS | 0.09–1.1ng mL−1 | [121] |
Fe3O4/PANI-polythiophene | Ni. Cu/soft drinks and spice samples | FAAS | 2.8 and 1.2 µg L−1 | [124] |
Fe3O4/PANI-polythiophene | Co/soft drinks, spice, vegetable, and water samples | FAAS | 1.6 μg L−1 | [125] |
PANI/GO/octadecyl-bonded silica (C18-SiO2)/Fe3O4 | fluoroquinolones/honey, milk, and egg | HPLC–UV | 0.001–0.010 μg L−1 | [123] |
attapulgite/Fe3O4/PANI | benzoylurea insecticides/ water | HPLC–DAD | 0.02–0.43 μg L−1 | [136] |
C/polypyrrole-PANI | furfurals/baby food and dry milk samples | HPLC–UV/Vis | 0.3–0.7 μg kg−1 | [122] |
magnetic GO/SiO2/PANI/PPy | Cr(III) and Pb(II)/water and food samples | ICP–MS | 4.808, 3.401 ng L−1 | [137] |
aluminum-metal organic framework/Fe3O4/PANI | anti-cancer drugs: imatinib, methotrexate irinotecan/biological and water | HPLC–UV | 0.06–0.33 ng mL−1 | [138] |
PANI/dicationic ionic liquid/Fe3O4 | polycyclic aromatic hydrocarbons/environmental water, sludge, and soil | GC–MS | 0.0008–0.2086 µg L−1 | [139] |
one-dimensional PANI/Fe3O4 | fluoroquinolones/honey samples | HPLC–FL | 0.4–1.4 ng g−1 | [140] |
carboxylate functionalized SPANI/Fe3O4 | fluoroquinolones/spiked milk samples | HPLC–UV | 25.8–30.2 ng.g−1 | [141] |
mixed iron hydroxides (MIHs)/PANI | phenols/in soil, drinking water, and fruit. | HPLC–DAD | 0.01–0.3 µg L−1 | [142] |
magnetic halloysite/PANI/Fe3O4 | PAHs/beer samples | GC–MS | 1.64–14.20 ng L−1 | [143] |
GO/PANI/N-[3-(trimethoxysilyl) propyl]ethylenediamine. | amoxicillin, ampicillin, penicillin G/milk samples, infant formula | HPLC–UV | 0.5–0.9 μg L−1 | [129] |
Fe3O4/SiO2/PANI/hydrophilic monomers/bovine albumin | coumarins/rat plasma | HPLC–DAD | 0.02–0.05 µg mL−1 | [144] |
layered double hydroxide with PANI/surfactant/Fe3O4 | Ni, Pb, Co, Cd/cosmetics | FL–AAS | 0.9–2.1 ng mL−1 | [130] |
NiFe2O4/SiO2/PANI-IL | methamidophos, malathion, parathion, diazinon/fruit juice | HPLC–DAD | 0.06–0.17 μg L−1 | [126] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sowa, I.; Wójciak, M.; Tyszczuk-Rotko, K.; Klepka, T.; Dresler, S. Polyaniline and Polyaniline-Based Materials as Sorbents in Solid-Phase Extraction Techniques. Materials 2022, 15, 8881. https://doi.org/10.3390/ma15248881
Sowa I, Wójciak M, Tyszczuk-Rotko K, Klepka T, Dresler S. Polyaniline and Polyaniline-Based Materials as Sorbents in Solid-Phase Extraction Techniques. Materials. 2022; 15(24):8881. https://doi.org/10.3390/ma15248881
Chicago/Turabian StyleSowa, Ireneusz, Magdalena Wójciak, Katarzyna Tyszczuk-Rotko, Tomasz Klepka, and Sławomir Dresler. 2022. "Polyaniline and Polyaniline-Based Materials as Sorbents in Solid-Phase Extraction Techniques" Materials 15, no. 24: 8881. https://doi.org/10.3390/ma15248881
APA StyleSowa, I., Wójciak, M., Tyszczuk-Rotko, K., Klepka, T., & Dresler, S. (2022). Polyaniline and Polyaniline-Based Materials as Sorbents in Solid-Phase Extraction Techniques. Materials, 15(24), 8881. https://doi.org/10.3390/ma15248881