Influence of Target-Substrate Distance on the Transport Process of Sputtered Atoms: MC-MD Multiscale Coupling Simulation
Abstract
:1. Introduction
2. MC-MD Simulation Method
2.1. Initial Status Data of Sputtered Atom
2.2. MC Simulation of the Free-Flight Processes of Sputtered Atoms in Gas Phase
2.3. MD Model of the Collision between Sputtered Atom and Background Gas Atom
2.4. MC-MD Coupled Simulation Scheme
3. Reliability Verification of the MD Collision Model
3.1. Influence of the Initial Velocity Direction of Ar Atom on θlab
3.2. Influence of Collision Parameter p on θlab
3.3. Influence of the Initial Position Azimuth Angle of Ar Atom on θlab
4. Results and Discussion
4.1. Example of the Transport Process of a Sputtered Atom in Gas Phase
4.2. Incident Energy Distribution
4.3. Incident Angle Distribution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mazur, M.; Obstarczyk, A.; Posadowski, W.; Domaradzki, J.; Kiełczawa, S.; Wiatrowski, A.; Wojcieszak, D.; Kalisz, M.; Grobelny, M.; Szmidt, J. Investigation of the Microstructure, Optical, Electrical and Nanomechanical Properties of ZnOx Thin Films Deposited by Magnetron Sputtering. Materials 2022, 15, 6551. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Salamanca, M.; Balcells, L.; Konstantinovi´c, Z.; Pomar, A.; Martínez, B.; Frontera, C. Optimization of the Growth Process of Double Perovskite Pr2−δNi1−xMn1+xO6−y Epitaxial Thin Films by RF Sputtering. Materials 2022, 15, 5046. [Google Scholar] [CrossRef] [PubMed]
- Vega, E.; Isukapati, S.B.; Oder, T.N. Microstructure and optical properties of sputter-deposited Ga2O3 films. J. Vac. Sci. Technol. A 2021, 39, 033412. [Google Scholar] [CrossRef]
- Salunkhe, P.; Muhammed, A.A.V.; Kekuda, D. Structural, spectroscopic and electrical properties of dc magnetron sputtered NiO thin films and an insight into different defect states. Appl. Phys. A 2021, 127, 390. [Google Scholar] [CrossRef]
- Kang, N.; Oh, S.; Gaboriau, F.; Ricard, A. Velocity distribution function of sputtered Cu atoms obtained by time resolved optical absorption spectroscopy. Rev. Sci. Instrum. 2010, 81, 013102. [Google Scholar] [CrossRef] [PubMed]
- Trieschmann, J.; Mussenbrock, T. Transport of sputtered particles in capacitive sputter sources. J. Appl. Phys. 2015, 118, 033302. [Google Scholar] [CrossRef] [Green Version]
- Somekh, R.E. The thermalization of energetic atoms during the sputtering process. J. Vac. Sci. Technol. A 1984, 2, 1285–1291. [Google Scholar] [CrossRef]
- Nakano, T.; Mori, I.; Baba, S. The effect of ’warm’ gas scattering on the deceleration of energetic atoms: Monte Carlo study of the sputter-deposition of compounds. Appl. Surf. Sci. 1997, 113–114, 642–646. [Google Scholar] [CrossRef]
- Yamamura, Y.; Ishida, M. Monte Carlo simulation of the thermalization of sputtered atoms and reflected atoms in the magnetron sputtering discharge. J. Vac. Sci. Technol. A 1995, 13, 101–112. [Google Scholar] [CrossRef]
- Turner, G.M.; Falconer, I.S.; James, B.W.; McKenzie, D.R. Monte Carlo calculation of the thermalization of atoms sputtered from the cathode of a sputtering discharge. J. Appl. Phys. 1989, 65, 3671–3679. [Google Scholar] [CrossRef]
- Nathan, S.S.; Rao, G.M.; Mohan, S. Transport of sputtered atoms in facing targets sputtering geometry: A numerical simulation study. J. Appl. Phys. 1998, 84, 564–571. [Google Scholar] [CrossRef]
- Mahieu, S.; Buyle, G.; Depla, D.; Heirwegh, S.; Ghekiere, P.; Gryse, R.D. Monte Carlo simulation of the transport of atoms in DC magnetron sputtering. Nucl. Instrum. Meth. B 2006, 243, 313–319. [Google Scholar] [CrossRef]
- Aeken, K.V.; Mahieu, S.; Depla, D. The metal flux from a rotating cylindrical magnetron: A Monte Carlo simulation. J. Phys. D Appl. Phys. 2008, 41, 205307. [Google Scholar] [CrossRef]
- Mahieu, S.; Aeken, K.V.; Depla, D. Transport of Sputtered Particles Through the Gas Phase. In Reactive Sputter Deposition, 1st ed.; Warlimont, H., Ed.; Springer: Berlin, Germany, 2008; Volume 109, pp. 199–227. [Google Scholar] [CrossRef]
- Settaouti, A.; Settaouti, L. Simulation of the transport of sputtered atoms and effects of processing conditions. Appl. Surf. Sci. 2008, 254, 5750–5756. [Google Scholar] [CrossRef]
- Sambandam, S.N.; Bhansali, S.; Bhethanabotla, V.; Sood, D. Studies on sputtering process of multicomponent Zr–Ti–Cu–Ni–Be alloy thin films. Vacuum 2006, 80, 406–414. [Google Scholar] [CrossRef]
- Eckstein, W. Computer Simulation of Ion-Solid Interactions; Springer: Berlin, Germany, 1991. [Google Scholar]
- Zhu, G.; Sun, J.P.; Guo, X.X.; Zou, X.X.; Zhang, L.B.; Gan, Z.Y. Molecular dynamics simulation of temperature effects on low energy near-surface cascades and surface damage in Cu. Nucl. Instrum. Methods B 2017, 401, 45–50. [Google Scholar] [CrossRef]
- Zhu, G.; Liu, W.; Gan, Z.; Xiao, B.J. Mechanism for anisotropic ejection of atoms from fcc (100) metal surface by low-energy argon ion bombardment: Molecular dynamics simulation. Vacuum 2021, 193, 110524. [Google Scholar] [CrossRef]
- Buchan, J.T.; Robinson, M.; Christie, H.J.; Roach, D.L.; Ross, D.K.; Marks, N.A. Molecular dynamics simulation of radiation damage cascades in diamond. J. Appl. Phys. 2015, 117, 245901. [Google Scholar] [CrossRef] [Green Version]
- Sigmund, P. Sputtering by ion bombardment theoretical concepts. In Sputtering by Particle Bombardment: I, 1st ed.; Behrisch, R., Ed.; Springer: Berlin, Germany, 2005; Volume 47, pp. 9–71. [Google Scholar]
- Chapman, B. Glow Discharge Processes: Sputtering and Plasma Etching; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Thompson, M.W. Atomic collision cascades in solids. Vacuum 2002, 66, 99–114. [Google Scholar] [CrossRef]
- Kalos, M.H.; Whitlock, P.A. Monte Carlo Methods; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Yamamura, Y.; Takiguchi, T.; Ishida, M. Energy and angular distributions of sputtered atoms at normal incidence. Radiat. Eff. Defects Solids 1991, 118, 237–261. [Google Scholar] [CrossRef]
- Jeans, J. The Dynamical Theory of Gases; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Ziegler, J.F.; Biersack, J.P.; Littmark, U. The Stopping and Range of Ions in Matter. In Treatise on Heavy-Ion Science, 1st ed.; Bromley, D.A., Ed.; Springer: Boston, MA, USA, 1985; Volume 6, pp. 93–129. [Google Scholar] [CrossRef]
- Kadlec, S.; Quaeyhaegens, C.; Knuyt, G.; Stals, L.M. Energy-resolved mass spectrometry and Monte Carlo simulation of atomic transport in magnetron sputtering. Surf. Coat. Technol. 1997, 97, 633–641. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Engin, C.; Urbassek, H.M. Anisotropy of the crater function of the Cu surface under Ar bombardment. Nucl. Instrum. Meth. B 2013, 295, 72–75. [Google Scholar] [CrossRef]
- Xiao, X.; Zuo, J.; Wang, Y.; Wu, K.; Zhang, J.; Liu, G.; Sun, J. Tuning the microstructure and mechanical properties in nanocrystalline Cr coatings by sputtering power. Mater. Sci. Eng. A 2022, 844, 143204. [Google Scholar] [CrossRef]
- Wei, Y.; Zhuang, D.; Zhao, M.; Gong, Q.; Sun, R.; Ren, G.; Wei, J. An investigation on the relationship between open circuit voltage and grain size for CZTSSe thin film solar cells fabricated by selenization of sputtered precursors. J. Alloys Compd. 2019, 773, 689–697. [Google Scholar] [CrossRef]
- Lu, J.; Chan, G.L. Numerical estimates for energy of sputtered target atoms and reflected Ar neutrals in sputter processes. Vacuum 2012, 86, 1134–1140. [Google Scholar] [CrossRef]
- Meyer, K.; Schuller, I.K.; Falco, C.M. Thermalization of sputtered atoms. J. Appl. Phys. 1981, 52, 5803–5805. [Google Scholar] [CrossRef]
- Karabacak, T. Thin-film growth dynamics with shadowing and re-emission effects. J. Nanophotonics 2011, 5, 2501. [Google Scholar] [CrossRef]
- Turner, G.M.; Falconer, I.S.; James, B.W.; McKenzie, D.R. Monte Carlo calculations of the properties of sputtered atoms at a substrate surface in a magnetron discharge. J. Vac. Sci. Technol. A 1992, 10, 455–461. [Google Scholar] [CrossRef]
- Reif, F. Fundamentals of Statistical and Thermal Physics; McGraw-Hill: London, UK, 1956. [Google Scholar]
- Turner, G.M.; Rossnagel, S.M.; Cuomo, J.J. Directionality of sputtered Cu atoms in a hollow cathode enhanced planar magnetron. J. Vac. Sci. Technol. A 1993, 11, 2796–2801. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, G.; Du, Q.; Xiao, B.; Chen, G.; Gan, Z. Influence of Target-Substrate Distance on the Transport Process of Sputtered Atoms: MC-MD Multiscale Coupling Simulation. Materials 2022, 15, 8904. https://doi.org/10.3390/ma15248904
Zhu G, Du Q, Xiao B, Chen G, Gan Z. Influence of Target-Substrate Distance on the Transport Process of Sputtered Atoms: MC-MD Multiscale Coupling Simulation. Materials. 2022; 15(24):8904. https://doi.org/10.3390/ma15248904
Chicago/Turabian StyleZhu, Guo, Qixin Du, Baijun Xiao, Ganxin Chen, and Zhiyin Gan. 2022. "Influence of Target-Substrate Distance on the Transport Process of Sputtered Atoms: MC-MD Multiscale Coupling Simulation" Materials 15, no. 24: 8904. https://doi.org/10.3390/ma15248904
APA StyleZhu, G., Du, Q., Xiao, B., Chen, G., & Gan, Z. (2022). Influence of Target-Substrate Distance on the Transport Process of Sputtered Atoms: MC-MD Multiscale Coupling Simulation. Materials, 15(24), 8904. https://doi.org/10.3390/ma15248904