Processability of 21NiCrMo2 Steel Using the Laser Powder Bed Fusion: Selection of Process Parameters and Resulting Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laser Powder Bed Fusion (PBF-LB/M)
- x1—laser power;
- x2—scanning velocity; and
- x3—hatching distance.
2.2. Microstructure and Tensile Analysis
3. Results
3.1. Process Parameters and Prediction Model
- PL from 160 to 240 W;
- vs from 600 to 1100 mm/s; and
- hd from 0.070 to 0.110 mm.
- Group “2.3”—the highest value of the energy density;
- Groups “2.11” and “2.12”—the most repeatability after validation; and
- Groups “2.29” and “2.30”—the extreme function values in statistical models (3) and (4), respectively.
- Group 2.15: (103.9 J/mm3)—0.29%;
- Group 2.5: (104.8 J/mm3)—0.17%.
3.2. Microstructure and Chemical Composition
3.3. Tensile Testing and Hardness Measurements
4. Conclusions
- The developed mathematical model allowed us to estimate the range of PBF-LB/M process parameters (PL, vs, hd) for 21NiCrMo2 steel that can be used to obtain a material with a porosity of less than 0.3%. Moreover, this approach can be implemented for other materials when selecting the parameters of the PBF-LB/M process.
- We empirically determined an energy density value which should be used in the PBF-LB/M process to obtain a porosity lower than 0.3%. This should be equal to 104 J/mm3 or higher. At the same time, this value was the closest to the result obtained utilizing the mathematical model (4).
- This value is comparable with the energy density values for other carburizing steels processed via PBF-LB/M (16MnCr5, 20MnCr5) and is higher than those used for quenching and tempering steel (30CrNiMo8, 42CrMo2).
- A microstructural investigation allowed us to observe a share of micro-areas with alloy-element concentrations (Cr, Ni, Mo). Comparing this with the results of other studies, it can be stated that this is a phenomenon related to the low-alloy carburizing steels used in SLM technology. However, the mechanism of their formation requires deeper analysis.
- The stress-relieving annealing temperature for the parent material produced recrystallization mechanisms in the incrementally produced material. This is evidence that for low-alloy steels, the temperatures of heat treatments should be modified in relation to those used for the parent material.
- Samples obtained during the PBF-LB/M process with the use of selected parameter groups (energy densities between 100.3 and 133.3 J/mm3) in as-built conditions revealed the lack of a significant yield point, an increased UTS level (on average 40% higher), and a decreased strain value (in average 24% lower) in comparison to those of the parent material.
- Additional heat treatment in the form of stress relief caused changes in tensile testing curves (the appearance of the yield point); it also caused a reduction in the UTS from 1012 MPa to 743 MPa and an increase in total strain to 17.2% (excluding process parameter group 2.30).
- The HV1 hardness of as-built samples assumed values in a range of 331–357 HV1, and it was higher by 140 HV1 compared to the parent material in normalized conditions (due to the presence of a martensitic-bainitic structure for 21NiCrMo2 in the as-built state). Additional heat treatment of the PBF-LB/M as-built samples caused a decrease in hardness equal to 60 HV1.
- The obtained test results confirmed the comparable or higher strength and hardness of 21NiCrMo2 steel compared to other carburizing steels in the PBF-LB/M area. This clearly confirms the possibility of using 21NiCrMo2 steel as an alternative to 20MnCr5 or 16MnCr5 steel in the discussed scope of research.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Parameter Group | PL (W) | vs (mm/s) | hd (mm) | tL (mm) | Ev (J/mm3) | PρXY (%) | PρYZ (%) | |
---|---|---|---|---|---|---|---|---|
1.1 | 160 | 600 | 0.110 | 0.03 | 80.8 | 0.69 | 0.27 | 0.48 |
1.2 | 180 | 600 | 0.110 | 0.03 | 90.9 | 0.24 | 0.62 | 0.43 |
1.3 | 200 | 600 | 0.110 | 0.03 | 101.0 | 0.12 | 0.21 | 0.17 |
1.4 | 220 | 600 | 0.110 | 0.03 | 111.1 | 0.13 | 0.24 | 0.19 |
1.5 | 240 | 600 | 0.110 | 0.03 | 121.2 | 0.11 | 0.06 | 0.09 |
1.6 | 160 | 700 | 0.110 | 0.03 | 69.3 | 0.74 | 0.85 | 0.80 |
1.7 | 180 | 700 | 0.110 | 0.03 | 77.9 | 0.37 | 0.39 | 0.38 |
1.8 | 220 | 700 | 0.110 | 0.03 | 95.2 | 0.22 | 0.16 | 0.22 |
1.9 | 240 | 700 | 0.110 | 0.03 | 103.9 | 0.24 | 0.08 | 0.16 |
1.10 | 160 | 800 | 0.100 | 0.03 | 66.7 | 1.01 | 1.22 | 1.01 |
1.11 | 180 | 800 | 0.100 | 0.03 | 75.0 | 0.68 | 0.91 | 0.80 |
1.12 | 200 | 800 | 0.100 | 0.03 | 83.3 | 0.87 | 0.50 | 0.87 |
1.13 | 220 | 800 | 0.100 | 0.03 | 91.7 | 0.29 | 0.44 | 0.37 |
1.14 | 240 | 800 | 0.100 | 0.03 | 100.0 | 0.29 | 0.41 | 0.29 |
1.15 | 160 | 900 | 0.100 | 0.03 | 59.3 | 3.62 | 3.65 | 3.64 |
1.16 | 180 | 900 | 0.100 | 0.03 | 66.7 | 2.20 | 1.67 | 2.20 |
1.17 | 200 | 900 | 0.100 | 0.03 | 74.1 | 1.43 | 3.03 | 2.23 |
1.18 | 220 | 900 | 0.100 | 0.03 | 81.5 | 1.25 | 1.39 | 1.25 |
1.19 | 240 | 900 | 0.100 | 0.03 | 88.9 | 0.36 | 0.61 | 0.49 |
1.20 | 160 | 1000 | 0.100 | 0.03 | 53.3 | 6.07 | 4.52 | 6.07 |
1.21 | 180 | 1000 | 0.100 | 0.03 | 60.0 | 2.37 | 3.41 | 2.89 |
1.22 | 200 | 1000 | 0.100 | 0.03 | 66.7 | 1.97 | 2.38 | 1.97 |
1.23 | 220 | 1000 | 0.100 | 0.03 | 73.3 | 3.34 | 2.19 | 2.77 |
1.24 | 240 | 1000 | 0.100 | 0.03 | 80.0 | 2.81 | 1.71 | 2.81 |
1.25 | 200 | 900 | 0.070 | 0.03 | 105.8 | 0.39 | 0.34 | 0.37 |
1.26 | 200 | 900 | 0.110 | 0.03 | 67.3 | 2.52 | 2.79 | 2.66 |
1.27 | 220 | 1100 | 0.080 | 0.03 | 83.3 | 1.46 | 2.35 | 1.91 |
Appendix B
Parameters Group | PL (W) | vs (mm/s) | hd (mm) | tL (mm) | Ev (J/mm3) | PρXY (%) | PρYZ (%) | ||
---|---|---|---|---|---|---|---|---|---|
2.1 | 200 | 600 | 0.100 | 0.03 | 111.1 | 0.13 | 0.16 | 0.26 | 0.15 |
2.2 | 220 | 600 | 0.100 | 0.03 | 122.2 | 0.12 | 0.09 | 0.26 | 0.11 |
2.3 | 240 | 600 | 0.100 | 0.03 | 133.3 | 0.13 | 0.12 | 0.28 | 0.13 |
2.4 | 200 | 700 | 0.100 | 0.03 | 95.2 | 1.30 | 1.45 | 0.32 | 1.38 |
2.5 | 220 | 700 | 0.100 | 0.03 | 104.8 | 0.27 | 0.23 | 0.17 | 0.25 |
2.6 | 240 | 700 | 0.100 | 0.03 | 114.3 | 0.30 | 0.12 | 0.18 | 0.21 |
2.7 | 200 | 800 | 0.100 | 0.03 | 83.3 | 0.63 | 0.38 | 0.83 | 0.51 |
2.8 | 220 | 800 | 0.100 | 0.03 | 91.7 | 0.64 | 0.47 | 0.53 | 0.56 |
2.9 | 240 | 800 | 0.100 | 0.03 | 100.0 | 0.62 | 0.34 | 0.53 | 0.48 |
2.10 | 200 | 600 | 0.110 | 0.03 | 101.0 | 0.53 | 0.34 | 0.17 | 0.44 |
2.11 | 220 | 600 | 0.110 | 0.03 | 111.1 | 0.14 | 0.11 | 0.17 | 0.13 |
2.12 | 240 | 600 | 0.110 | 0.03 | 121.2 | 0.14 | 0.12 | 0.38 | 0.13 |
2.13 | 200 | 700 | 0.110 | 0.03 | 86.6 | 1.15 | 1.08 | 0.50 | 1.12 |
2.14 | 220 | 700 | 0.110 | 0.03 | 95.2 | 0.78 | 0.60 | 0.35 | 0.69 |
2.15 | 240 | 700 | 0.110 | 0.03 | 103.9 | 0.28 | 0.30 | 0.29 | 0.32 |
2.16 | 200 | 800 | 0.110 | 0.03 | 75.8 | 0.58 | 1.92 | 1.28 | 1.25 |
2.17 | 220 | 800 | 0.110 | 0.03 | 83.3 | 1.28 | 2.11 | 0.98 | 1.70 |
2.18 | 240 | 800 | 0.110 | 0.03 | 90.9 | 0.71 | 0.82 | 0.78 | 0.77 |
2.19 | 200 | 600 | 0.120 | 0.03 | 92.6 | 0.59 | 0.52 | 0.18 | 0.56 |
2.20 | 220 | 600 | 0.120 | 0.03 | 101.9 | 0.29 | 0.32 | 0.18 | 0.31 |
2.21 | 240 | 600 | 0.120 | 0.03 | 111.1 | 0.21 | 0.12 | 0.29 | 0.17 |
2.22 | 200 | 700 | 0.120 | 0.03 | 79.4 | 0.49 | 0.57 | 0.79 | 0.53 |
2.23 | 220 | 700 | 0.120 | 0.03 | 87.3 | 0.56 | 0.72 | 0.64 | 0.64 |
2.24 | 240 | 700 | 0.120 | 0.03 | 95.2 | 0.42 | 0.39 | 0.59 | 0.41 |
2.25 | 200 | 800 | 0.120 | 0.03 | 69.4 | 1.80 | 2.02 | 1.86 | 1.91 |
2.26 | 220 | 800 | 0.120 | 0.03 | 76.4 | 1.07 | 1.23 | 1.54 | 1.15 |
2.27 | 240 | 800 | 0.120 | 0.03 | 83.3 | 1.08 | 1.93 | 1.35 | 1.51 |
2.28 | 212 | 672 | 0.108 | 0.03 | 97.1 | 0.99 | 0.22 | ≈0 | 0.61 |
2.29 | 205 | 619 | 0.110 | 0.03 | 100.3 | 0.10 | 0.06 | Min. of functions (3) | 0.08 |
2.30 | 240 | 893 | 0.070 | 0.03 | 127.9 | 0.52 | 0.56 | Min. of functions (4) | 0.54 |
References
- Milewski, J.O. Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewelry; Springer International Publishing: Cham, Switzerland, 2017; Volume 258. [Google Scholar] [CrossRef]
- Rickenbacher, L.; Spierings, A.; Wegener, K. An integrated cost-model for selective laser melting (SLM). Rapid Prototyp. J. 2013, 19, 208–214. [Google Scholar] [CrossRef]
- Taminger, K.M.; Hafley, R.A. Electron Beam Freeform Fabrication for Cost Effective Near-Net Shape Manufacturing. 2004. Available online: https://ntrs.nasa.gov/citations/20080013538 (accessed on 10 November 2020).
- Ruffo, M.; Tuck, C.; Hague, R. Cost estimation for rapid manufacturing—Laser sintering production for low to medium volumes. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2006, 220, 1417–1427. [Google Scholar] [CrossRef] [Green Version]
- Michael, B.; Sanjay, J.; Timothy, S.; Corey, D. Cost Modeling and Depreciation for Reused Powder Feedstocks in Powder Bed Fusion Additive Manufacturing. In Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 8–10 August 2016; Volume 44, pp. 52–54. [Google Scholar]
- Kamps, T.; Lutter-Guenther, M.; Seidel, C.; Gutowski, T.; Reinhart, G. Cost- and energy-efficient manufacture of gears by laser beam melting. CIRP J. Manuf. Sci. Technol. 2018, 21, 47–60. [Google Scholar] [CrossRef]
- Rogers, K. Additive Manufacturing Technologies for Gears; American Gear Manufacturers Association: Alexandria, VA, USA, 2020. [Google Scholar]
- Lindemann, C.; Jahnke, U.; Moi, M.; Koch, R. Analyzing product lifecycle costs for a better understanding of cost drivers in additive manufacturing. In 2012 International Solid Freeform Fabrication Symposium; University of Texas at Austin: Austin, TX, USA, 2012; Volume 33, pp. 177–188. [Google Scholar] [CrossRef]
- Gupta, K. Recent developments in additive manufacturing of gears: A review. Adv. Transdiscipl. Eng. 2018, 8, 131–136. [Google Scholar] [CrossRef]
- Lin, C.; Fan, Y.; Zhang, Z.; Fu, G.; Cao, X. Additive manufacturing with secondary processing of curve-face gears. Int. J. Adv. Manuf. Technol. 2016, 86, 9–20. [Google Scholar] [CrossRef]
- Höller, A.; Huber, F.; Zumofen, L.; Kirchheim, A.; Dinner, H.; Dennig, H.-J. Additive Manufactured and Topology Optimized Flexpin for Planetary Gears. In Industrializing Additive Manufacturing; Springer International Publishing: Cham, Switzerland, 2021; pp. 337–356. [Google Scholar] [CrossRef]
- Barreiro, P.; Bronner, A.; Hoffmeister, J.; Hermes, J. New improvement opportunities through applying topology optimization combined with 3D printing to the construction of gearbox housings. Forsch. Im Ing. Eng. Res. 2019, 83, 669–681. [Google Scholar] [CrossRef]
- Concli, F.; Bonaiti, L.; Gerosa, R.; Cortese, L.; Nalli, F.; Rosa, F.; Gorla, C. Bending fatigue behavior of 17-4 ph gears produced by additive manufacturing. Appl. Sci. 2021, 11, 3019. [Google Scholar] [CrossRef]
- Ramadani, R.; Pal, S.; Kegl, M.; Predan, J.; Drstvenšek, I.; Pehan, S.; Belšak, A. Topology optimization and additive manufacturing in producing lightweight and low vibration gear body. Int. J. Adv. Manuf. Technol. 2021, 113, 3389–3399. [Google Scholar] [CrossRef]
- Tezel, T.; Topal, E.S.; Kovan, V. Characterising the wear behaviour of DMLS-manufactured gears under certain operating conditions. Wear 2019, 440–441, 203106. [Google Scholar] [CrossRef]
- Tezel, T.; Topal, E.S.; Kovan, V. Failure analysis of 3D-printed steel gears. Eng. Fail. Anal. 2020, 110, 104411. [Google Scholar] [CrossRef]
- Rokicki, P.; Kozik, B.; Budzik, G.; Dziubek, T.; Bernaczek, J.; Przeszlowski, L.; Markowska, O.; Sobolewski, B.; Rzucidlo, A. Manufacturing of aircraft engine transmission gear with SLS (DMLS) method. Aircr. Eng. Aerosp. Technol. Int. J. 2015, 3, 397–403. [Google Scholar] [CrossRef]
- Robatto, L.; Rego, R.; Mascheroni, J.; Kretzer, A.; Criscuolo, I.; Borille, A. Evolution of Residual Stresses induced by different L-PBF build orientations along a post-processing chain of 20MnCr5 steel. Procedia CIRP 2022, 108, 873–878. [Google Scholar] [CrossRef]
- Yang, M.; Sisson, R.D. Carburizing Heat Treatment of Selective-Laser-Melted 20MnCr5 Steel. J. Mater. Eng. Perform. 2020, 29, 3476–3485. [Google Scholar] [CrossRef]
- Schmitt, M.; Kamps, T.; Siglmüller, F.; Winkler, J.; Schlick, G.; Seidel, C.; Tobie, T.; Stahl, K.; Reinhart, G. Laser-based powder bed fusion of 16MnCr5 and resulting material properties. Addit. Manuf. 2020, 35, 101372. [Google Scholar] [CrossRef]
- Damon, J.; Koch, R.; Kaiser, D.; Graf, G.; Dietrich, S.; Schulze, V. Process development and impact of intrinsic heat treatment on the mechanical performance of selective laser melted AISI 4140. Addit. Manuf. 2019, 28, 275–284. [Google Scholar] [CrossRef]
- Jurisch, M.; Klöden, B.; Kirchner, A.; Walther, G.; Weißgärber, T. SEBM processing of 42CrMo4. Prog. Addit. Manuf. 2020, 5, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Zumofen, L.; Kirchheim, A.; Dennig, H.J. Laser powder bed fusion of 30CrNiMo8 steel for quenching and tempering: Examination of the processability and mechanical properties. Prog. Addit. Manuf. 2020, 5, 75–81. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, S.; Zhang, C.; Chen, J.; Zhang, J.; Liu, Y. Optimization of laser energy density and scanning strategy on the forming quality of 24CrNiMo low alloy steel manufactured by SLM. Mater. Charact. 2020, 170, 110718. [Google Scholar] [CrossRef]
- Sridar, S.; Zhao, Y.; Li, K.; Wang, X.; Xiong, W. Post-heat treatment design for high-strength low-alloy steels processed by laser powder bed fusion. Mater. Sci. Eng. A 2020, 788, 139531. [Google Scholar] [CrossRef]
- Schmitt, M.; Schlick, G.; Seidel, C.; Reinhart, G. Examination of the processability of 16MnCr5 by means of laser powder bed fusion. Procedia CIRP 2018, 74, 76–81. [Google Scholar] [CrossRef]
- Kamps, T. Leichtbau von Stirnzahnrädern aus Edelstahl Mittels Laserstrahlschmelzen. Ph.D. Thesis, Technischen Universität München, Munich, Germany, 2018. [Google Scholar]
- Scheitler, C.; Rothfelder, R.; Rasch, M.; Ahuja, B.; Schmidt, M.; Merklein, C.; Beer, O. Laser beam melting of M50NiL: Influence of inert gas flow on resulting part properties. In Proceedings of the 6th International Conference on Additive Technologies iCAT2016, Nurnberg, Germany, 29–30 November 2016. [Google Scholar]
- Adegoke, O.; Andersson, J.; Brodin, H.; Pederson, R. Influence of laser powder bed fusion process parameters on voids, cracks, and microhardness of nickel-based superalloy alloy 247LC. Materials 2020, 13, 3770. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yin, B.; Sun, Z.; Wen, P.; Zheng, Y.; Tian, Y. Hot cracking in ZK60 magnesium alloy produced by laser powder bed fusion process. Mater. Lett. 2021, 301, 130283. [Google Scholar] [CrossRef]
- Parrish, G. Carburizing: Microstructures and Properties; ASM International: Almere, The Netherlands, 1999; Available online: https://books.google.pl/books?id=bAI9bDXHvZUC (accessed on 10 November 2020).
- Boyle, E.; Northwood, D.O.; Bowers, R.; Sun, X.; Bauerle, P. The Effects of Initial Microstructure and Heat Treatment on the Core Mechanical Properties of Carburized Automotive Steels. 2018. Available online: https://www.researchgate.net/publication/286889962 (accessed on 10 November 2020).
- Schmitt, M.; Gottwalt, A.; Winkler, J.; Tobie, T.; Schlick, G.; Stahl, K.; Tetzlaff, U.; Schilp, J.; Reinhart, G. Carbon particle in-situ alloying of the case-hardening steel 16mncr5 in laser powder bed fusion. Metals 2021, 11, 896. [Google Scholar] [CrossRef]
GA Temperature (°C) | Nozzle Diameter (mm) | Material Delivery System | Spraying Pressure (Bar) | Gas Type | Feedstock Material Type |
---|---|---|---|---|---|
1630 | 6.5 | Gravitational | 32 | Argon | Steel bar |
Element | Average Measurement (wt. %) | Standard Deviation (wt. %) | Parent Material (ISO) (wt. %) |
---|---|---|---|
C | nd | nd | 0.17–0.23 |
Si | 0.31 | 0.04 | <0.40 |
Cr | 0.64 | 0.06 | 0.35–0.65 |
Mn | 0.83 | 0.09 | 0.60–0.95 |
Ni | 0.41 | 0.13 | 0.40–0.70 |
Mo | 0.24 | 0.11 | 0.15–0.25 |
Fe | 97.54 | 0,21 | Balanced |
Heat Treatment Type | Conditions |
---|---|
Stress relief annealing | Heating in the furnace until reaching 650 °C Annealing at 650 °C for 1.5 h Furnace cooling |
Normalizing | Annealing in 930 °C for 4 h Air cooling |
Group | Variables | Condition |
---|---|---|
Extreme (minimum) of the function (3) | Laser power (W) | 205 |
Scanning velocity (mm/s) | 619 | |
Hatch distance (mm) | 0.110 | |
Deterministically estimated group | Laser power (W) | 212 |
Scanning velocity (mm/s) | 672 | |
Hatch distance (mm) | 0.108 |
Coefficient Name | Coefficient Value | Value of p Coefficient |
---|---|---|
β0 | 29.829000 | 0.152869 |
β1 | −0.011000 | 0.882832 |
β11 | 0.000140 | 0.170741 |
β2 | −0.041000 | 0.028687 |
β22 | 0.000022 | 0.000049 |
β3 | −294.833000 | 0.126690 |
β33 | 570.583000 | 0.337300 |
β12 | −0.000078 | 0.003678 |
β13 | −0.007000 | 0.988815 |
β23 | 0.278000 | 0.005153 |
As-Built | ||||||
---|---|---|---|---|---|---|
Parameter group | Avr. UTS (MPa) | SD—Avr. UTS (MPa) | Avr. YS (MPa) | SD—Avr. YS (MPa) | Avr. elong (%) | SD—Avr. elong (%) |
2.3 | 996.1 | 7.8 | 925.0 | 15.0 | 14.1 | 0.6 |
2.12 | 1016.7 | 1.4 | 950.0 | 5.0 | 13.8 | 0.2 |
2.11 | 1023.6 | 4.1 | 965.0 | 5.0 | 13.3 | 1.0 |
2.29 | 1032.0 | 9.1 | 970.0 | 5.0 | 8.9 | 2.3 |
2.30 | 993.3 | 16.4 | 941.7 | 2.9 | 9.6 | 0.8 |
AHT condition | ||||||
2.3 AHT | 745.8 | 3.7 | 697.7 | 3.7 | 18.3 | 1.1 |
2.12 AHT | 746.5 | 3.0 | 697.8 | 2.2 | 17.0 | 2.6 |
2.11 AHT | 741.3 | 7.1 | 696.1 | 5.1 | 18.4 | 1.3 |
2.29 AHT | 739.8 | 16.6 | 705.3 | 0.9 | 15.1 | 1.5 |
2.30 AHT | 744.4 | 4.3 | 694.8 | 4.1 | 11.1 | 0.9 |
Parent material | ||||||
21NiCrMo2 | 614.0 | 0.9 | 424.0 | 3.7 | 22.4 | 1.0 |
Parameter Group | HV1 (XY) | SD | HV1 (YZ) | SD |
---|---|---|---|---|
2.3 | 333 | 12 | 343 | 5 |
2.11 | 346 | 21 | 351 | 6 |
2.12 | 334 | 25 | 345 | 7 |
2.29 | 349 | 10 | 357 | 6 |
2.30 | 331 | 20 | 339 | 5 |
2.3 AHT | 263 | 4 | 261 | 4 |
2.12 AHT | 272 | 5 | 264 | 3 |
2.11 AHT | 266 | 5 | 261 | 2 |
2.29 AHT | 267 | 3 | 266 | 4 |
2.30 AHT | 259 | 4 | 261 | 3 |
Parent material | ||||
21NiCrMo2 | 203 | 4 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łuszczek, J.; Śnieżek, L.; Grzelak, K.; Kluczyński, J.; Torzewski, J.; Szachogłuchowicz, I.; Wachowski, M.; Karpiński, M. Processability of 21NiCrMo2 Steel Using the Laser Powder Bed Fusion: Selection of Process Parameters and Resulting Mechanical Properties. Materials 2022, 15, 8972. https://doi.org/10.3390/ma15248972
Łuszczek J, Śnieżek L, Grzelak K, Kluczyński J, Torzewski J, Szachogłuchowicz I, Wachowski M, Karpiński M. Processability of 21NiCrMo2 Steel Using the Laser Powder Bed Fusion: Selection of Process Parameters and Resulting Mechanical Properties. Materials. 2022; 15(24):8972. https://doi.org/10.3390/ma15248972
Chicago/Turabian StyleŁuszczek, Jakub, Lucjan Śnieżek, Krzysztof Grzelak, Janusz Kluczyński, Janusz Torzewski, Ireneusz Szachogłuchowicz, Marcin Wachowski, and Marcin Karpiński. 2022. "Processability of 21NiCrMo2 Steel Using the Laser Powder Bed Fusion: Selection of Process Parameters and Resulting Mechanical Properties" Materials 15, no. 24: 8972. https://doi.org/10.3390/ma15248972
APA StyleŁuszczek, J., Śnieżek, L., Grzelak, K., Kluczyński, J., Torzewski, J., Szachogłuchowicz, I., Wachowski, M., & Karpiński, M. (2022). Processability of 21NiCrMo2 Steel Using the Laser Powder Bed Fusion: Selection of Process Parameters and Resulting Mechanical Properties. Materials, 15(24), 8972. https://doi.org/10.3390/ma15248972