Investigation of High-Performance Electrode Materials: Processing and Storage Mechanism
Funding
Conflicts of Interest
References
- Manthiram, A.; Murugan, A.V.; Sarkar, A.; Muraliganth, T. Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ. Sci. 2008, 1, 621–638. [Google Scholar] [CrossRef]
- Yoo, H.D.; Markevich, E.; Salitra, G.; Sharon, D.; Aurbach, D. On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater. Today 2014, 17, 110–121. [Google Scholar] [CrossRef]
- An, W.; Gao, B.; Mei, S.; Xiang, B.; Fu, J.; Wang, L.; Zhang, Q.; Chu, P.K.; Huo, K. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat. Commun. 2019, 10, 1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, D.; Zhou, W.; Ye, C.; Zhang, Q.; Chen, Y.; Gu, L.; Davey, K.; Qiao, S.Z. An Electrolytic Zn-MnO2 Battery for High-Voltage and Scalable Energy Storage. Angew. Chem. Int. Ed. 2019, 58, 7823–7828. [Google Scholar] [CrossRef]
- Yu, K.; Pan, X.; Zhang, G.; Liao, X.; Zhou, X.; Yan, M.; Xu, L.; Mai, L. Nanowires in Energy Storage Devices: Structures, Synthesis, and Applications. Adv. Energy Mater. 2018, 8, 1802369. [Google Scholar] [CrossRef]
- Zhai, Y.; Dou, Y.; Zhao, D.; Fulvio, P.F.; Mayes, R.T.; Dai, S. Carbon Materials for Chemical Capacitive Energy Storage. Adv. Mater. 2011, 23, 4828–4850. [Google Scholar] [CrossRef]
- Liu, C.; Li, F.; Ma, L.P.; Cheng, H.M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62. [Google Scholar] [CrossRef]
- Kamat, P.V. Lithium-ion batteries and beyond: Celebrating the 2019 Nobel Prize in chemistry–a virtual issue. ACS Energy Lett. 2019, 4, 2757–2759. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Li, Q.; Kaneti, Y.V.; Hou, D.; Yamauchi, Y.; Mai, Y. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chem. Soc. Rev. 2020, 49, 4681–4736. [Google Scholar] [CrossRef]
- Dubal, D.P.; Ayyad, O.; Ruiz, V.; Gomez-Romero, P. Hybrid energy storage: The merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 2015, 44, 1777–1790. [Google Scholar] [CrossRef]
- Jin, Y.; Huang, S.; Yue, X.; Du, H.; Shen, P.K. Mo- and Fe-Modified Ni(OH)2/NiOOH Nanosheets as Highly Active and Stable Electrocatalysts for Oxygen Evolution Reaction. ACS Catal. 2018, 8, 2359–2363. [Google Scholar] [CrossRef]
- Yan, B.; Krishnamurthy, D.; Hendon, C.H.; Deshpande, S.; Surendranath, Y.; Viswanathan, V. Surface Restructuring of Nickel Sulfide Generates Optimally Coordinated Active Sites for Oxygen Reduction Catalysis. Joule 2017, 1, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Yuan, Z.; Zhang, X.; Bi, S.; Zhou, Z.; Tian, J.; Zhang, Q.; Niu, Z. Non-Metal Ion Co-Insertion Chemistry in Aqueous Zn/MnO2 Batteries. Angew. Chem. Int. Ed. 2021, 60, 7056–7060. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Sharpe, R.; He, K.; Li, C.; Saray, M.; Liu, T.; Yao, W.; Cheng, M.; Jin, H.; Wang, S.; et al. Understanding intercalation chemistry for sustainable aqueous zinc-manganese dioxide batteries. Nat. Sustain. 2022, 5, 890–898. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, C.; Wang, F.; Gu, Y.; Zhang, P.; Waclawik, E.R.; Du, A.; Ostrikov, K.; Wang, H. A zinc bromine “supercapattery” system combining triple functions of capacitive, pseudocapacitive and battery-type charge storage. Mater. Horiz. 2020, 7, 495–503. [Google Scholar] [CrossRef]
- Chen, Q.; Lu, F.; Xia, Y.; Wang, H.; Kuang, X. Interlayer expansion of few-layered Mo-doped SnS2 nanosheets grown on carbon cloth with excellent lithium storage performance for lithium ion batteries. J. Mater. Chem. A 2017, 5, 4075–4083. [Google Scholar] [CrossRef]
- Choi, J.W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013. [Google Scholar] [CrossRef] [Green Version]
- Ben Yahia, M.; Vergnet, J.; Saubanere, M.; Doublet, M.L. Unified picture of anionic redox in Li/Na-ion batteries. Nat. Mater. 2019, 18, 496–502. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Kim, H.; Ding, Z.; Lee, M.H.; Lim, K.; Yoon, G.; Kang, K. Recent Progress in Electrode Materials for Sodium-Ion Batteries. Adv. Energy Mater. 2016, 6, 1600943. [Google Scholar] [CrossRef] [Green Version]
- Jian, Z.; Luo, W.; Ji, X. Carbon Electrodes for K-Ion Batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569. [Google Scholar] [CrossRef]
- Jin, J.; Geng, X.; Chen, Q.; Ren, T.L. A Better Zn-Ion Storage Device: Recent Progress for Zn-Ion Hybrid Supercapacitors. Nano Micro Lett. 2022, 14, 64. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Jin, J.; Kou, Z.; Liao, C.; Liu, Z.; Zhou, L.; Wang, J.; Mai, L. Zn2+ Pre-Intercalation Stabilizes the Tunnel Structure of MnO2 Nanowires and Enables Zinc-Ion Hybrid Supercapacitor of Battery-Level Energy Density. Small 2020, 16, 202000091. [Google Scholar]
- Blanc, L.E.; Kundu, D.; Nazar, L.F. Scientific Challenges for the Implementation of Zn-Ion Batteries. Joule 2020, 4, 771–799. [Google Scholar] [CrossRef]
- Wang, F.; Fan, X.; Gao, T.; Sun, W.; Ma, Z.; Yang, C.; Han, F.; Xu, K.; Wang, C. High-Voltage Aqueous Magnesium Ion Batteries. ACS Central Sci. 2017, 3, 1121–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emly, A.; Van der Ven, A. Mg intercalation in layered and spinel host crystal structures for Mg batteries. Inorg. Chem. 2015, 54, 4394–4402. [Google Scholar] [CrossRef]
- Gheytani, S.; Liang, Y.; Wu, F.; Jing, Y.; Dong, H.; Rao, K.K.; Chi, X.; Fang, F.; Yao, Y. An Aqueous Ca-Ion Battery. Adv. Sci. 2017, 4, 1700465. [Google Scholar] [CrossRef] [Green Version]
- Das, S.K. Graphene: A Cathode Material of Choice for Aluminum-Ion Batteries. Angew. Chem. Int. Ed. 2018, 57, 16606–16617. [Google Scholar] [CrossRef]
- Yue, F.; Tie, Z.; Deng, S.; Wang, S.; Yang, M.; Niu, Z. An Ultralow Temperature Aqueous Battery with Proton Chemistry. Angew. Chem. Int. Ed. 2021, 60, 13882–13886. [Google Scholar] [CrossRef]
- Chen, Q.; Jin, J.; Song, M.; Zhang, X.; Li, H.; Zhang, J.; Hou, G.; Tang, Y.; Mai, L.; Zhou, L. High-Energy Aqueous Ammonium-Ion Hybrid Supercapacitors. Adv. Mater. 2022, 34, 2107992. [Google Scholar] [CrossRef]
- Chen, Q.; Song, M.; Zhang, X.; Zhang, J.; Hou, G.; Tang, Y. Ammonium ion pre-intercalation stabilized tunnel h-WO3 for fast NH4+ storage. J. Mater. Chem. A 2022, 10, 15614–15622. [Google Scholar] [CrossRef]
- Chao, D.; Fan, H.J. Intercalation Pseudocapacitive Behavior Powers Aqueous Batteries. Chem 2019, 5, 1357–1360. [Google Scholar] [CrossRef]
- Xia, M.; Zhang, X.; Yu, H.; Yang, Z.; Chen, S.; Zhang, L.; Shui, M.; Xie, Y.; Shu, J. Hydrogen bond chemistry in Fe4[Fe(CN)6]3 host for aqueous NH4+ batteries. Chem. Eng. J. 2021, 421, 127759. [Google Scholar] [CrossRef]
- Ruzmetov, D.; Oleshko, V.P.; Haney, P.M.; Lezec, H.J.; Karki, K.; Baloch, K.H.; Agrawal, A.K.; Davydov, A.V.; Krylyuk, S.; Liu, Y. Electrolyte stability determines scaling limits for solid-state 3D Li ion batteries. Nano Lett. 2011, 12, 505–511. [Google Scholar] [CrossRef]
- Teng, Z.; Wan, L.; Sun, S.; Qi, C.; Jiao, S.; Xia, Q.; Hui, X. Phosphate Ion Functionalized Co3O4 Ultrathin Nanosheets with Greatly Improved Surface Reactivity for High Performance Pseudocapacitors. Adv. Mater. 2017, 29, 1604167. [Google Scholar]
- Barghamadi, M.; Djuandhi, L.; Sharma, N.; Best, A.S.; Hollenkamp, A.F.; Mahon, P.J.; Musameh, M.; Rüther, T. In Situ Synchrotron XRD and sXAS Studies on Li-S Batteries with Ionic-Liquid and Organic Electrolytes. J. Electrochem. Soc. 2020, 167, 100526. [Google Scholar] [CrossRef]
- Wang, G.; Yi, Y.; Han, D.; Li, Y. Oxygen defective metal oxides for energy conversion and storage. Nano Today 2017, 13, 23–29. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, X.; Gong, W.; Zhao, L.; Li, G.; Jiang, K.; Ma, R.; Rummeli, M.H.; Li, F.; Sasaki, T.; et al. Size-Independent Fast Ion Intercalation in Two-Dimensional Titania Nanosheets for Alkali-Metal-Ion Batteries. Angew. Chem. Int. Ed. 2019, 58, 8740–8745. [Google Scholar] [CrossRef]
- Dyer, J.A.; Desjardins, R.L. A Review and Evaluation of Fossil Energy and Carbon Dioxide Emissions in Canadian Agriculture. J. Sustain. Agric. 2009, 33, 210–228. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q. Investigation of High-Performance Electrode Materials: Processing and Storage Mechanism. Materials 2022, 15, 8987. https://doi.org/10.3390/ma15248987
Chen Q. Investigation of High-Performance Electrode Materials: Processing and Storage Mechanism. Materials. 2022; 15(24):8987. https://doi.org/10.3390/ma15248987
Chicago/Turabian StyleChen, Qiang. 2022. "Investigation of High-Performance Electrode Materials: Processing and Storage Mechanism" Materials 15, no. 24: 8987. https://doi.org/10.3390/ma15248987
APA StyleChen, Q. (2022). Investigation of High-Performance Electrode Materials: Processing and Storage Mechanism. Materials, 15(24), 8987. https://doi.org/10.3390/ma15248987