Adhesive Bonding of Scots Pine Wood from the Szczecinek Forest District for the Production of Garden Equipment: An Experimental Investigation
Abstract
:1. Introduction
2. Materials and Methods
- 64 h soaking in water at temp. (23 ± 2) °C.
- 8 h drying in the temp. (55 ± 2) °C.
- 16 h soaking in water at temp. (23 ± 2) °C.
- 8 h drying in the temp. (55 ± 2) °C.
- 16 h soaking in water at temp. (23 ± 2) °C.
- 8 h drying in the temp. (55 ± 2) °C.
- 16 h soaking in water at temp. (23 ± 2) °C.
- 1 h in water at temp. (100 ± 2) °C.
- 20 h drying in air at temp. (50 ± 2) °C.
- 1 h in water at temp. (100 ± 2) °C.
- Cooling of samples immersed in water to a temp. (20 ± 1) °C.
3. Results
4. Discussion
5. Summary
6. Conclusions
- The PUR adhesive that was used in the tests is suitable for gluing Scots pine (Pinus sylvestris L.) wood, which was pressure-impregnated with two substances used in production technologies for garden equipment.
- In the case of the impregnated wood, the PUR glue joints met the criterion requirements for water and heat resistance, according to the technical approval of the Institute of Building Technology AT 15-2948/00.
- The obtained adhesive joints showed, both in terms of the obtained values and the images of delamination expressed by the WFP factor, very favorable relations, indicating their high quality. The weakest zone in the evaluated joints, determining the level of the obtained values, was wood.
- The adopted point scoring system was found to be useful as a criterion for the gluing quality, enabling a classification of the joints on the basis of the overall analysis, including water, thermal resistance and aging tests.
- In the point-based analysis, the systems with impregnated wood obtained 38 points, approximately 85% of the total available.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodrigues, W.; Espinosa, M.M.; Polito, W.L. Comparison of the compressive strength of impregnated and nonimpregnated eucalyptus subjected to two different pressures and impregnation times. Mater. Res. 2004, 7, 241–245. [Google Scholar] [CrossRef] [Green Version]
- Nayeri, H.; Tarmian, A.; Abdulkhani, A.; Ebrahimi, G. Decay resistance of wood impregnated with monoethanolamine and sodium bisulfite pulping black liquors. Maderas Cienc. Tecnol. 2017, 19, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Hu, L.; Yang, Z.; Duan, W. Effect of the ACQ preservative on the bonding strength of aqueous polymer isocyanate bonded Masson pine joints and on the adhesive penetration into wood. BioResources 2019, 14, 2610–2621. [Google Scholar] [CrossRef]
- Przystupa, K.; Pieniak, D.; Samociuk, W.; Walczak, A.; Bartnik, G.; Kamocka-Bronisz, R.; Sutuła, M. Mechanical Properties and Strength Reliability of Impregnated Wood after High Temperature Conditions. Materials 2020, 13, 5521. [Google Scholar] [CrossRef]
- Alade, A.A.; Naghizadeh, Z.; Wessels, C.B.; Tyhoda, L. A review of the effects of wood preservative impregnation on adhesive bonding and joint performance. J. Adhes. Sci. Technol. 2022, 36, 1593–1617. [Google Scholar] [CrossRef]
- Ulusoy, H.; Peker, H. The Effect of Various Impregnating Agents on the Adhesion Strength of Solution Concentration Structure. Nat. Prod. Biotechnol. 2021, 1, 20–27. [Google Scholar]
- Ciglian, D.; Reinprecht, L. The Effect of Inorganic Preservatives in the Norway Spruce Wood on Its Wettability and Adhesion with PUR Glue. Appl. Sci. 2022, 12, 5642. [Google Scholar] [CrossRef]
- Hänsel, A.; Sandak, J.; Sandak, A.; Mai, J.; Niemz, P. Selected previous findings on the factors influencing the gluing quality of solid wood products in timber construction and possible developments: A review. Wood Mater. Sci. Eng. 2022, 17, 230–241. [Google Scholar] [CrossRef]
- Vick, C.B.; Okkonen, E.A. Strength and durability of one-part polyurethane adhesive bonds to wood. For. Prod. J. 1998, 48, 71–76. [Google Scholar]
- Terfloth, C. Wir öffnen neue Horizonte. Kleben mit PUR-Prepolymeren. 7 Jowat Symposium Die Innovationen für die Welt des Lebens; JOWAT AG Comp.: Detmold, Germany, 2000; pp. 55–60. [Google Scholar]
- Proszyk, S.; Sedliačik, J.; Krystofiak, T. Investigations of the strength and durability of glue lines from PUR adhesives. Zbornik referátov. IV. Sympozium n/t. Drevné kompozitné materiály/Book of abstracts. In Proceedings of the 4th Seminar Wood Based Composites, Zvolen, Slovakia, 26–28 June 2022; pp. 232–235. [Google Scholar]
- Ammann, S.; Niemz, P. Fibre and adhesive bridging at glue joints in european beech wood. Wood Res. 2014, 59, 303–311. [Google Scholar]
- Lehringer, C.; Gabriel, J. Review of Recent Research Activities on One-Component PUR-Adhesives for Engineered Wood Products. In Materials and Joints in Timber Structures; Aicher, S., Reinhardt, H.-W., Garrecht, H., Eds.; RILEM Bookseries 9; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2014; Volume 9, ISBN 978-94-007-7810-8. [Google Scholar] [CrossRef]
- Bröker, F.-W.; Šonje, Ž. Trotz höchster Belastung im innigen Verbund. Adhäsion 1997, 41, 37–38. [Google Scholar]
- Clauss, S.; Dijkstra, D.; Gabriel, J.; Kläusler, O.; Matner, M.; Meckel, W.; Niemz, P. Influence of the chemical structure of PUR prepolymers on thermal stability. Int. J. Adhes. Adhes. 2011, 31, 513–523. [Google Scholar] [CrossRef]
- Lexa, J. Životnost lepených spojov vopred impregnovaných lamiel/Durability of glued joints of preimpregnated lamellas. Drevársky Výskum 1970, 207–213. [Google Scholar]
- Jain, N.C.; Gupta, R.C.; Chuahan, B.R.S. Effect of preservatives on gluing of pinus roxburghii (Chir) in plywood making. Holzforsch. Und Holzverwert. 1976, 28, 134–137. [Google Scholar]
- Göldi, M.; Sell, J.; Strässler, H. Scherfestigkeit der Klebverbindung von vorimprägniertem Holz-Beitrag zur entwicklung wetterbeständigen Brettschichtholzes. Holz Als Roh-Und Werkst. 1979, 37, 241–250. [Google Scholar] [CrossRef]
- Burmester, A. Beitrag zur Prüfung der Leimbindefestigkeit von schutzmittelgetränkte Holz. Holz Als Roh-Und Werkst. 1983, 41, 261–264. [Google Scholar] [CrossRef]
- Cameron, F.; Pizzi, A. Effect of excessive pretreatment of pine timber with CCA wood preservatives on the bond quality of PRF and TRF wood adhesives. Holz Als Roh-Und Werkst. 1985, 43, 149–151. [Google Scholar] [CrossRef]
- Kuka, E.; Andersone, I.; Kurnosova, N.; Cirule, D.; Andersons, B.; Danieks, M. The potential of improving wood preservative penetration into glued wood products bonded with one-component polyurethane by discontinuous adhesive bondline design. Eur. J. Wood Wood Prod. 2022, 80, 223–234. [Google Scholar] [CrossRef]
- Neusser, H.; Schall, W. Untersuchung einiger aussichtsreicher Veredelungsmöglichkeiten von Sperrholz. Teil III. Die Wirkung von Binde-, Schutz- und Imprägniermitteln aug die Eigenschaften. Holzforsch Holzverwert. 1978, 30, 69–76. [Google Scholar]
- Kreber, B.; Humphrey, P.; Morell, J. Effect of polyborate pre-treatment on the shear strength development of phenolic resin to sitka spruce bonds. Holzforschung 1993, 47, 398–402. [Google Scholar] [CrossRef]
- Zhang, H.; Gardner, D.; Wang, J.; Shi, Q. Surface tension, adhesive wettability, and bondability of artificially weathered CCA-treated southern pine. For. Prod. J. 1997, 47, 69–72. [Google Scholar]
- Frihart, C.R. The challenge of bonding treated wood. In Proceedings of the International Conference on Environmentally-Compatible Forest Products, Porto, Portugal, 22–24 September 2004. [Google Scholar]
- Lorenz, L.F.; Frihart, C. Adhesive bonding of wood treated with ACQ and copper azole preservatives. For. Prod. J. 2006, 56, 90–93. [Google Scholar]
- Tascıoglu, C.; Budakcı, M. Adhesion properties of woods treated with copper based wood preservative chemicals. Wood Res. 2009, 54, 23–32. [Google Scholar]
- Vick, C.; Kuster, T. Mechanical interlocking of adhesive bonds to CCA–treated southern pine—A scanning electron microscopic study. Wood Fiber Sci. 1992, 24, 36–46. [Google Scholar]
- Vick, C.B.; Christiansen, A.W. Cure of phenol-formaldehyde adhesive in the presence of CCA-treated wood by differential scanning calorimetry. Wood Fiber Sci. 1993, 25, 77–86. [Google Scholar]
- Yalcin, M.; Ceylan, H. The effects of tannins on adhesion strength and surface roughness of varnished wood after accelerated weathering. J. Coat. Technol. Res. 2017, 14, 185–193. [Google Scholar] [CrossRef]
- Mahďaková, O.; Kadlecová, M. Vplyv Lastanoxu D na niektoré fyzikálne a mechanickè vlasnosti smrekového dreva/Effect of the Lastanox D on some psychical and mechanical properties of spruce wood. Drevo 1990, 45, 96–98. [Google Scholar]
- Hirata, T.; Fukui, Y.; Kawamoto, S.; Karasawa, H. Combustion gas toxicity, hygroscopicity, and adhesive strength of plywood treated with flame retardants. Wood Sci. Technol. 1992, 26, 461–473. [Google Scholar] [CrossRef]
- Van Acker, J.; Stevens, M. Effect of various preservative treatments on the mechanical and physical properties of plywood. In Proceedings of the 24th Annual Meeting, Orlando, FL, USA, 16–20 May 1993; The International Research Group on Wood Preservation Section 4. pp. 1–15. [Google Scholar]
- Winandy, J.E. Effects of waterborne preservative treatment on mechanical properties: A review. In Proceedings of the 91st Annual Meeting of American Wood Preservers’ Association, New York, NY, USA, 21–24 May 1995; pp. 21–24. [Google Scholar]
- Dirol, D.; Mouras, S. Remedial treatments of glulam=diffusion of active ingredients through glue lines from solid wood diffusable preservatives. In Proceedings of the 27th Annual Meeting, Guadeloupe, France, 19–24 May 1996; Section 3. pp. 1–15. [Google Scholar]
- Popper, R.; Gehri, E.; Eberle, G. Mechanosorptive eigenschaften von bewehrtem brettschichtholz: Relaxation bei zyklischer klimabelastung. Drevársky Výskum 1999, 44, 1–11. [Google Scholar] [CrossRef]
- Frihart, C.R. Interaction of copper wood preservatives and adhesives. In Proceedings of the 26th Annual Meeting of the Adhesion Society, Inc., Myrtle Beach, SC, USA, 23–26 February 2003; pp. 23–26. [Google Scholar]
- Miyazaki, J.; Nakano, T. Effects of wood preservatives on adhesive properties. IV. Effects of preservation and incising on shear strength and delamination. Mokuzai Gakkaishi 2003, 49, 212–219. [Google Scholar]
- Dias, A.; Martins, C.; Dias, A. Influence of the treatment phase on the gluing performance of glued laminated timber. BioResources 2020, 15, 5725–5736. [Google Scholar] [CrossRef]
- Vick, C. Structural bonding ot CCA-treated wood for foundation systems. For. Prod. J. 1980, 30, 25–32. [Google Scholar]
- Colakoglu, G.; Colak, S.; Aydin, I.; Yildiz, U.C.; Yildiz, S. Effect of boric acid treatment on mechanical properties of laminated beech veneer lumber. Silva Fenn. 2003, 37, 505–510. [Google Scholar] [CrossRef] [Green Version]
- Bomba, J.; Šedivka, P.; Böhm, M.; Devera, M. Influence of Moisture Content on the Bond Strength and Water Resistance of Bonded Wood Joints. BioResources 2014, 9, 5208–5218. [Google Scholar] [CrossRef]
- Cehic, M. Influence humidity and heat on tensile shear strength of lap joints made of solid fir/spruce wood. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1208, 012026. [Google Scholar] [CrossRef]
- PN-B-03156:1997; Konstrukcje Drewniane. Metody Badań. Nośność Złączy Klejowych/Wood Constructions. Research Methods. Bearing Capacity of Adhesive Joints. Building Research Institute: Warszawa, Poland, 1997.
- AT-15-2948/00; Aprobata Techniczna/Technical Approval/ITB/Building Research Institute. Wooden gluing materials: Warszawa, Poland, 2000.
- PN-EN 29142:1999; Kleje. Wytyczne Wyboru Znormalizowanych Warunków Laboratoryjnego Starzenia do Badania Połączeń Klejowych/Adhesives. Guidelines for the Selection of Standardised Laboratory Ageing Conditions for Testing Adhesive Bonds. Building Research Institute: Warszawa, Poland, 1999.
- Aicher, S.; Ahmad, Z.; Hirsch, M. Bondline shear strength and wood failure of European and tropical hardwood glulams. Eur. J. Wood Wood Prod. 2018, 76, 1205–1222. [Google Scholar] [CrossRef] [Green Version]
- Yorur, H.; Kurt, Ş.; Uysal, B. Bonding strength of oak with different adhesives after humid-water-heat tests. J. Adhes. Sci. Technol. 2014, 28, 690–701. [Google Scholar] [CrossRef]
- Král, P.; Klímek, P.; Děcký, D. Comparison of the bond strength of oak (Quercus L.) and beech (Fagus sylvatica L.) wood glued with different adhesives considering various hydrothermal exposures. J. For. Sci. 2015, 61, 189–192. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Z.W.; Ng, Q.L.; Hiziroglu, S. Evaluation of bonding strength and Surface quality of wood exposed to accelerated soaking. J. Trop. For. Sci. 2018, 30, 622–627. [Google Scholar] [CrossRef]
- Gorshin, S.N.; Kuroptiev, P.F.; Inbier, Ł.A. Prochnost’ konservirovannych kleenych balok/Corrosion of preserved knee logs. Derewoobrab. Prom. 1969, 8–10. [Google Scholar]
- Jabłoński, M.; Matejak, M. Der Einfluss von saurem regen auf die festigkeit von impragniertem Holz. In Drewno-materiał o wszechstronnym przeznaczeniu i zastosowaniu/Wood—A material of universal significance and application. In Proceedings of the XIII Konferencja Naukowa Wydziału Technologii Drewna SGGW/XIII Scientific Conference of the Faculty of Wood Technology of the Warsaw University of Life Sciences, Warszawa, Poland, 16–18 November 1999; pp. 293–296. [Google Scholar]
- Janowiak, J.; Manbeck, H.; Blankenhorn, P.; Kessler, K. Strength properties of exterior adhesives on preservative-treated hardwoods. For. Prod. J. 1992, 42, 68–76. [Google Scholar]
Properties | Protection Agent X | Protection Agent Y |
Density in the temp. 23 °C [g/cm3] | 1.20 | 1.65 |
pH value | ca. 9.6 | ca. 2–3 (4% solution) |
Viscosity in the temp. 20 °C [mPa·s] | 100 mPa·s | - |
No. of Tests | Tests Conditions | Shearing Strength [MPa] |
---|---|---|
1 | 7 1) days in the normal climate 2) | ≥9.0 |
2 | 7 days in the normal climate 4 days in cold water 3) | ≥3.5 |
3 | 7 days in the normal climate 4 days in cold water 7 days in the normal climate | ≥7.0 |
4 | 7 days in the normal climate 6 h in boiling water 2 h in cold water | ≥2.5 (not carried out) |
5 | 7 days in the normal climate 6 h in boiling water 2 h in cold water 7 days in the normal climate | ≥7.0 (not carried out) |
6 | 7 days in the normal climate 3 h in the temp. 80 (±2) °C (Examination in terms of procedure WATT 91) | ≥5.5 |
Calculation Formula | Assumptions Criterion | Scale (Degree) |
---|---|---|
| ≥80 | 5 |
≥60 | 4 | |
≥40 | 3 | |
≥20 | 2 | |
<20 | 1 | |
| ≥80 | 5 |
≥60 | 4 | |
≥40 | 3 | |
≥20 | 2 | |
<20 | 1 | |
| ≥80 | 5 |
≥60 | 4 | |
≥40 | 3 | |
≥20 | 2 | |
≤20 | 1 | |
| ≥80 | 5 |
≥60 | 4 | |
≥40 | 3 | |
≥20 | 2 | |
≤20 | 1 |
Calculation Formula | Assumptions Criterion [%] | Scale (Degree) |
---|---|---|
Aging tests D7 and D11, acc. to the PN-EN ISO 9142 standard (after individual cycles) Aging test D7 or D11 after the second and third cycles RcD7 lub cD11 = ---------------------------------------- × 100 [%] Aging test D7 or D11 | ≥90 | 5 |
≥80 | 4 | |
≥70 | 3 | |
≥60 | 2 | |
<60 | 1 |
Test No. acc. to ITB Procedure (Table 2) | Statistical Data | |||
---|---|---|---|---|
Xmin. | Xavg. | Xmax. | ν | |
[MPa] | [%] | |||
unprotected wood | ||||
1 | 6.87 | 8.83 | 10.72 | 12.29 |
2 | 2.73 | 3.20 | 4.67 | 16.06 |
3 | 5.22 | 6.37 | 8.64 | 12.68 |
6 | 7.82 | 8.74 | 9.90 | 6.89 |
wood protected with the X protection agent | ||||
1 | 6.52 | 8.22 | 11.36 | 16.06 |
2 | 3.07 | 3.62 | 4.60 | 14.18 |
3 | 5.96 | 7.09 | 7.84 | 9.28 |
6 | 6.21 | 7.20 | 9.06 | 11.70 |
wood protected with the Y protection agent | ||||
1 | 5.65 | 8.52 | 12.17 | 21.72 |
2 | 3.22 | 3.91 | 4.82 | 11.33 |
3 | 5.81 | 7.12 | 8.32 | 10.96 |
6 | 6.54 | 8.11 | 9.12 | 11.62 |
Number of Cycles | Statistical Date | |||
---|---|---|---|---|
Xmin. | Xavg. | Xmax. | ν | |
[MPa] | [%] | |||
unprotected wood | ||||
1 | 5.25 | 6.42 | 8.61 | 15.21 |
2 | 4.90 | 5.83 | 7.39 | 10.65 |
3 | 4.22 | 5.13 | 5.93 | 9.35 |
pine wood protected with X protection agent | ||||
1 | 6.46 | 7.36 | 8.61 | 8.96 |
2 | 5.24 | 6.22 | 7.42 | 11.68 |
3 | 4.64 | 5.50 | 7.04 | 12.87 |
pine wood protected with Y protection agent | ||||
1 | 6.44 | 7.49 | 8.67 | 8.99 |
2 | 5.35 | 6.34 | 7.35 | 9.95 |
3 | 5.17 | 5.51 | 5.98 | 5.27 |
Number of Cycles | Statistical Data | |||
---|---|---|---|---|
Xmin. | Xavg. | Xmax. | ν | |
[MPa] | [%] | |||
unprotected wood | ||||
1 | 5.01 | 5.66 | 7.10 | 8.65 |
2 | 4.53 | 5.18 | 6.06 | 8.46 |
3 | 4.46 | 5.19 | 6.03 | 9.75 |
pine wood protected with X protection agent | ||||
1 | 4.62 | 5.51 | 7.31 | 11.69 |
2 | 4.44 | 5.33 | 6.14 | 10.85 |
3 | 4.55 | 5.45 | 6.71 | 11.94 |
pine wood protected with Y protection agent | ||||
1 | 4.87 | 5.59 | 6.37 | 8.33 |
2 | 4.87 | 5.28 | 5.74 | 5.12 |
3 | 5.03 | 5.58 | 6.65 | 8.21 |
Configurations | Test Type | Sum | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Test No. acc. to the ITB procedure | D7 i D11 acc. to the PN-EN ISO 9142 standard | |||||||||
2 | 3 | 6 | D7-1 | D7-2 | D7-3 | D11-1 | D11-2 | D11-3 | ||
Points (scale according to Table 4) | ||||||||||
Pine wood | 2 | 4 | 5 | 4 | 4 | 3 | 4 | 3 | 3 | 32 |
Pine wood + X protection agent | 3 | 5 | 5 | 5 | 4 | 4 | 4 | 4 | 4 | 38 |
Pine wood + Y protection agent | 3 | 5 | 5 | 5 | 4 | 4 | 4 | 4 | 4 | 38 |
Configurations | Aging Test No. D7 and No. D11 acc. to the PN-EN ISO 9142 Standard | Sum | |||
---|---|---|---|---|---|
RcD7-2/D7-1 | RcD7-3/D7-1 | RcD11-2/D11-1 | RcD11-3/D11-1 | ||
Points | |||||
Pine wood | 5 | 4 | 5 | 5 | 19 |
Pine wood + X protection agent | 4 | 3 | 5 | 5 | 17 |
Pine wood + Y protection agent | 4 | 3 | 5 | 5 | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krystofiak, T.; Lis, B.; Beker, C. Adhesive Bonding of Scots Pine Wood from the Szczecinek Forest District for the Production of Garden Equipment: An Experimental Investigation. Materials 2022, 15, 8994. https://doi.org/10.3390/ma15248994
Krystofiak T, Lis B, Beker C. Adhesive Bonding of Scots Pine Wood from the Szczecinek Forest District for the Production of Garden Equipment: An Experimental Investigation. Materials. 2022; 15(24):8994. https://doi.org/10.3390/ma15248994
Chicago/Turabian StyleKrystofiak, Tomasz, Barbara Lis, and Cezary Beker. 2022. "Adhesive Bonding of Scots Pine Wood from the Szczecinek Forest District for the Production of Garden Equipment: An Experimental Investigation" Materials 15, no. 24: 8994. https://doi.org/10.3390/ma15248994
APA StyleKrystofiak, T., Lis, B., & Beker, C. (2022). Adhesive Bonding of Scots Pine Wood from the Szczecinek Forest District for the Production of Garden Equipment: An Experimental Investigation. Materials, 15(24), 8994. https://doi.org/10.3390/ma15248994