Processing and Properties of Tungsten-Steel Composites and FGMs Prepared by Spark Plasma Sintering
Abstract
:1. Introduction
- Find optimal sintering conditions for the pure tungsten and steel materials and their composites;
- Perform basic characterization of the relevant properties;
- Demonstrate the capability of the SPS technique to form FGMs in various configurations as well as joints with bulk counterparts.
2. Materials and Methods
3. Results
3.1. Pure Tungsten
3.2. Pure Steel
3.3. Tungsten-Steel Composites
3.4. FGMs and Joints
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matějíček, J. Materials for Fusion Applications. Acta Polytech. 2013, 2, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Pintsuk, G. Tungsten as a Plasma-Facing Material. In Comprehensive Nuclear Materials; Konings, R.J.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 4, pp. 551–581. [Google Scholar]
- Rieth, M.; Dudarev, S.L.; Gonzalez De Vicente, S.M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D.E.J.; Balden, M.; Baluc, N.; Barthe, M.-F.; et al. Recent Progress in Research on Tungsten Materials for Nuclear Fusion Applications in Europe. J. Nucl. Mater. 2013, 432, 482–500. [Google Scholar] [CrossRef] [Green Version]
- Pitts, R.A.; Carpentier, S.; Escourbiac, F.; Hirai, T.; Komarov, V.; Kukushkin, A.S.; Lisgo, S.; Loarte, A.; Merola, M.; Mitteau, R.; et al. Physics Basis and Design of the ITER Plasma-Facing Components. J. Nucl. Mater. 2011, 415, S957–S964. [Google Scholar] [CrossRef]
- Weber, T.; Stüber, M.; Ulrich, S.; Vaßen, R.; Basuki, W.W.; Lohmiller, J.; Sittel, W.; Aktaa, J. Functionally Graded Vacuum Plasma Sprayed and Magnetron Sputtered Tungsten/EUROFER97 Interlayers for Joints in Helium-Cooled Divertor Components. J. Nucl. Mater. 2013, 436, 29–39. [Google Scholar] [CrossRef]
- Heuer, S.; Weber, T.; Pintsuk, G.; Coenen, J.W.; Matejicek, J.; Linsmeier, C. Aiming at Understanding Thermo-Mechanical Loads in the First Wall of DEMO: Stress–Strain Evolution in a Eurofer-Tungsten Test Component Featuring a Functionally Graded Interlayer. Fusion Eng. Des. 2018, 135, 141–153. [Google Scholar] [CrossRef]
- Heuer, S.; Coenen, J.W.; Pintsuk, G.; Matějíček, J.; Vilémová, M.; Linsmeier, C. Overview of Challenges and Developments in Joining Tungsten and Steel for Future Fusion Reactors. Phys. Scr. 2020, T171, 014028. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, R.; Ai, S.; He, R.; Pei, Y.; Fang, D. Load Distribution in Threads of Porous Metal-Ceramic Functionally Graded Composite Joints Subjected to Thermomechanical Loading. Compos. Struct. 2015, 134, 680–688. [Google Scholar] [CrossRef] [Green Version]
- Miteva, A.; Bouzenkova-Penkova, A. Some Aerospace Applications Of Functionally Graded Materials. Aerosp. Res. Bulg. 2021, 33, 195–209. [Google Scholar] [CrossRef]
- Weber, T.; Aktaa, J. Numerical Assessment of Functionally Graded Tungsten/Steel Joints for Divertor Applications. Fusion Eng. Des. 2011, 86, 220–226. [Google Scholar] [CrossRef]
- Matějíček, J.; Nevrlá, B.; Vilémová, M.; Boldyryeva, H. Overview of Processing Technologies for Tungsten-Steel Composites and FGMs for Fusion Applications. Nukleonika 2015, 60, 267–273. [Google Scholar] [CrossRef]
- Saheb, N.; Iqbal, Z.; Khalil, A.; Hakeem, A.S.; Al Aqeeli, N.; Laoui, T.; Al-Qutub, A.; Kirchner, R. Spark Plasma Sintering of Metals and Metal Matrix Nanocomposites: A Review. J. Nanomater. 2012, 2012, 983470. [Google Scholar] [CrossRef] [Green Version]
- Orrù, R.; Licheri, R.; Locci, A.M.; Cincotti, A.; Cao, G. Consolidation/Synthesis of Materials by Electric Current Activated/Assisted Sintering. Mater. Sci. Eng. R Rep. 2009, 63, 127–287. [Google Scholar] [CrossRef]
- Munir, Z.A.; Anselmi-Tamburini, U.; Ohyanagi, M. The Effect of Electric Field and Pressure on the Synthesis and Consolidation of Materials: A Review of the Spark Plasma Sintering Method. J. Mater. Sci. 2006, 41, 763–777. [Google Scholar] [CrossRef]
- Davis, J.W.; Barabash, V.R.; Makhankov, A.; Plöchl, L.; Slattery, K.T. Assessment of Tungsten for Use in the ITER Plasma Facing Components. J. Nucl. Mater. 1998, 258–263, 308–312. [Google Scholar] [CrossRef]
- Matějíček, J.; Kolman, B.; Dubský, J.; Neufuss, K.; Hopkins, N.; Zwick, J. Alternative Methods for Determination of Composition and Porosity in Abradable Materials. Mater. Charact. 2006, 57, 17–29. [Google Scholar] [CrossRef]
- ASTM Standard E1461−13; Standard Test Method for Thermal Diffusivity by the Flash Method. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM Standard E2585-09; Standard Practice for Thermal Diffusivity by the Flash Method. ASTM International: West Conshohocken, PA, USA, 2009.
- ASTM Standard E384-17; Standard Test Method for Microindentation Hardness of Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- Autissier, E.; Richou, M.; Minier, L.; Naimi, F.; Pintsuk, G.; Bernard, F. Spark Plasma Sintering of Pure and Doped Tungsten as Plasma Facing Material. Phys. Scr. 2014, T159, 014034. [Google Scholar] [CrossRef]
- Ren, C.; Fang, Z.Z.; Zhang, H.; Koopman, M. The Study on Low Temperature Sintering of Nano-Tungsten Powders. Int. J. Refract. Met. Hard Mater. 2016, 61, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Vilémová, M.; Matějíček, J.; Mušálek, R.; Nohava, J. Application of Structure-Based Models of Mechanical and Thermal Properties on Plasma Sprayed Coatings. J. Therm. Spray Technol. 2012, 21, 372–382. [Google Scholar] [CrossRef]
- Vilémová, M.; Matějíček, J.; Nevrlá, B.; Chernyshova, M.; Gasior, P.; Kowalska-Strzeciwilk, E.; Jäger, A. Heat Load and Deuterium Plasma Effects on SPS and WSP Tungsten. Nukleonika 2015, 60, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Material Property Database (MPDB); ver. 6.79, rel.; JAHM Software: North Reading, MA, USA, 2013.
- Nevrlá, B.; Vilémová, M.; Matějíček, J. Thermal and Mechanical Properties of Tungsten Compacts Prepared by SPS. In Proceedings of the 13th Youth Symposium on Experimental Solid Mechanics, Děčín, Czech Republic, 29 June–2 July 2014; pp. 80–83. [Google Scholar]
- Gaško, M.; Rosenberg, G. Correlation Between Hardness and Tensile Properties in Ultra-High Strength Dual Phase Steels. Mater. Eng. 2012, 18, 155–159. [Google Scholar]
- Krishna, S.C.; Gangwar, N.K.; Jha, A.K.; Pant, B. On the Prediction of Strength from Hardness for Copper Alloys. J. Mater. 2013, 2013, 1–6. [Google Scholar] [CrossRef]
- Pintsuk, G.; Brünings, S.E.; Döring, J.E.; Linke, J.; Smid, I.; Xue, L. Development of W/Cu-Functionally Graded Materials. Fusion Eng. Des. 2003, 66–68, 237–240. [Google Scholar] [CrossRef]
- Matějíček, J.; Nevrlá, B.; Čech, J.; Vilémová, M.; Klevarová, V.; Haušild, P. Mechanical and Thermal Properties of Individual Phases Formed in Sintered Tungsten-Steel Composites. Acta Phys. Pol. A 2015, 128, 718–721. [Google Scholar] [CrossRef]
- Koller, M.; Kruisová, A.; Mušálek, R.; Matějíček, J.; Seiner, H.; Landa, M. On the Relation between Microstructure and Elastic Constants of Tungsten/Steel Composites Fabricated by Spark Plasma Sintering. Fusion Eng. Des. 2018, 133, 51–58. [Google Scholar] [CrossRef]
Powder Size (μm) | Pressure (MPa) | Porosity (AM) (%) | Porosity (IA) (%) |
---|---|---|---|
2 | 80 | 12.21 | 0.69 |
4 | 80 | 17.32 | 4.22 |
2 | 60 | 12.31 | 0.14 |
4 | 60 | 14.75 | 7.22 |
Powder Size (μm) | Temperature (°C) | HV0.3 |
---|---|---|
−20 | 1800 | 232 ± 6 |
−20 | 1900 | 252 ± 12 |
−20 | 2000 | 284 ± 5 |
−20 | 2100 | 348 ± 9 |
2 | 1800 | 364 ± 13 |
2 | 2000 | 373 ± 11 |
0.7 | 1600 | 419 ± 12 |
0.7 | 1800 | 409 ± 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matějíček, J.; Mušálek, R.; Dlabáček, Z.; Klevarová, V.; Kocmanová, L. Processing and Properties of Tungsten-Steel Composites and FGMs Prepared by Spark Plasma Sintering. Materials 2022, 15, 9037. https://doi.org/10.3390/ma15249037
Matějíček J, Mušálek R, Dlabáček Z, Klevarová V, Kocmanová L. Processing and Properties of Tungsten-Steel Composites and FGMs Prepared by Spark Plasma Sintering. Materials. 2022; 15(24):9037. https://doi.org/10.3390/ma15249037
Chicago/Turabian StyleMatějíček, Jiří, Radek Mušálek, Zdeněk Dlabáček, Veronika Klevarová, and Lenka Kocmanová. 2022. "Processing and Properties of Tungsten-Steel Composites and FGMs Prepared by Spark Plasma Sintering" Materials 15, no. 24: 9037. https://doi.org/10.3390/ma15249037
APA StyleMatějíček, J., Mušálek, R., Dlabáček, Z., Klevarová, V., & Kocmanová, L. (2022). Processing and Properties of Tungsten-Steel Composites and FGMs Prepared by Spark Plasma Sintering. Materials, 15(24), 9037. https://doi.org/10.3390/ma15249037