An Instantaneous Recombination Rate Method for the Analysis of Interband Recombination Processes in ZnO Crystals
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Theoretical Model
3.2. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Tsao, C.-W.; Fang, M.-J.; Hsu, Y.-J. Modulation of Interfacial Charge Dynamics of Semiconductor Heterostructures for Advanced Photocatalytic Applications. Coord. Chem. Rev. 2021, 438, 213876. [Google Scholar] [CrossRef]
- Qian, R.; Zong, H.; Schneider, J.; Zhou, G.; Zhao, T.; Li, Y.; Yang, J.; Bahnemann, D.W.; Pan, J.H. Charge Carrier Trapping, Recombination and Transfer during TiO2 Photocatalysis: An Overview. Catal. Today 2019, 335, 78–90. [Google Scholar] [CrossRef]
- Lettieri, S.; Gargiulo, V.; Pallotti, D.K.; Vitiello, G.; Maddalena, P.; Alfè, M.; Marotta, R. Evidencing Opposite Charge-Transfer Processes at TiO2/Graphene-Related Materials Interface through a Combined EPR, Photoluminescence and Photocatalysis Assessment. Catal. Today 2018, 315, 19–30. [Google Scholar] [CrossRef]
- Du, J.; Lai, X.; Yang, N.; Zhai, J.; Kisailus, D.; Su, F.; Wang, D.; Jiang, L. Hierarchically Ordered Macro−Mesoporous TiO2−Graphene Composite Films: Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities. ACS Nano 2011, 5, 590–596. [Google Scholar] [CrossRef]
- Wang, Q.; Wee, A.T.S. Photoluminescence Upconversion of 2D Materials and Applications. J. Phys. Condens. Matter 2021, 33, 223001. [Google Scholar] [CrossRef]
- Tebyetekerwa, M.; Zhang, J.; Xu, Z.; Truong, T.N.; Yin, Z.; Lu, Y.; Ramakrishna, S.; Macdonald, D.; Nguyen, H.T. Mechanisms and Applications of Steady-State Photoluminescence Spectroscopy in Two-Dimensional Transition-Metal Dichalcogenides. ACS Nano 2020, 14, 14579–14604. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Jin, R. Photoluminescence from Colloidal Silicon Nanoparticles: Significant Effect of Surface. Nanotechnol. Rev. 2017, 6, 601–612. [Google Scholar] [CrossRef]
- Saar, A. Photoluminescence from Silicon Nanostructures: The Mutual Role of Quantum Confinement and Surface Chemistry. JNP 2009, 3, 032501. [Google Scholar] [CrossRef]
- Coscia, U.; Ambrosone, G.; Lettieri, S.; Maddalena, P.; Rigato, V.; Restello, S.; Bobeico, E.; Tucci, M. Preparation of Microcrystalline Silicon–Carbon Films. Sol. Energy Mater. Sol. Cells 2005, 87, 433–444. [Google Scholar] [CrossRef]
- Ambrosone, G.; Coscia, U.; Lettieri, S.; Maddalena, P.; Minarini, C. Optical, Structural and Electrical Properties of Μc-Si:H Films Deposited by SiH4+H2. Mater. Sci. Eng. B 2003, 101, 236–241. [Google Scholar] [CrossRef]
- Arenkiel, R.K.; Lundstrom, M.S. Minority Carriers in III-V Semiconductors: Physics and Applications; Ahrenkiel, R.K., Lundstrom, M.S., Eds.; Semiconductors and semimetals; Academic Press, Inc.: Boston, MA, USA, 1993; ISBN 978-0-12-752139-8. [Google Scholar]
- Ahrenkiel, R.K.; Keyes, B.M.; Dunlavy, D.J. Intensity-dependent Minority-carrier Lifetime in III-V Semiconductors Due to Saturation of Recombination Centers. J. Appl. Phys. 1991, 70, 225–231. [Google Scholar] [CrossRef]
- Ng, T.K.; Holguin-Lerma, J.A.; Kang, C.H.; Ashry, I.; Zhang, H.; Bucci, G.; Ooi, B.S. Group-III-Nitride and Halide-Perovskite Semiconductor Gain Media for Amplified Spontaneous Emission and Lasing Applications. J. Phys. D Appl. Phys. 2021, 54, 143001. [Google Scholar] [CrossRef]
- Li, Q.; Anpo, M.; Wang, X. Application of Photoluminescence Spectroscopy to Elucidate Photocatalytic Reactions at the Molecular Level. Res. Chem. Intermed. 2020, 46, 4325–4344. [Google Scholar] [CrossRef]
- Vicente, J.R.; Rafiei Miandashti, A.; Sy Piecco, K.W.E.; Pyle, J.R.; Kordesch, M.E.; Chen, J. Single-Particle Organolead Halide Perovskite Photoluminescence as a Probe for Surface Reaction Kinetics. ACS Appl. Mater. Interfaces 2019, 11, 18034–18043. [Google Scholar] [CrossRef] [PubMed]
- Pallotti, D.; Orabona, E.; Amoruso, S.; Maddalena, P.; Lettieri, S. Modulation of Mixed-Phase Titania Photoluminescence by Oxygen Adsorption. Appl. Phys. Lett. 2014, 105, 031903. [Google Scholar] [CrossRef] [Green Version]
- Anpo, M.; Che, M. Applications of Photoluminescence Techniques to the Characterization of Solid Surfaces in Relation to Adsorption, Catalysis, and Photocatalysis. In Advances in Catalysis; Elsevier: Amsterdam, The Netherlands, 1999; Volume 44, pp. 119–257. ISBN 978-0-12-007844-8. [Google Scholar]
- Gfroerer, T.H. Photoluminescence in Analysis of Surfaces and Interfaces. Encycl. Anal. Chem. 2000, 67, 3810. [Google Scholar]
- Bittig, H.C.; Körtzinger, A.; Neill, C.; van Ooijen, E.; Plant, J.N.; Hahn, J.; Johnson, K.S.; Yang, B.; Emerson, S.R. Oxygen Optode Sensors: Principle, Characterization, Calibration, and Application in the Ocean. Front. Mar. Sci. 2018, 4. [Google Scholar] [CrossRef]
- Lettieri, S.; Pallotti, D.K.; Gesuele, F.; Maddalena, P. Unconventional Ratiometric-Enhanced Optical Sensing of Oxygen by Mixed-Phase TiO2. Appl. Phys. Lett. 2016, 109, 031905. [Google Scholar] [CrossRef] [Green Version]
- Pallotti, D.K.; Passoni, L.; Gesuele, F.; Maddalena, P.; Di Fonzo, F.; Lettieri, S. Giant O2-Induced Photoluminescence Modulation in Hierarchical Titanium Dioxide Nanostructures. ACS Sens. 2017, 2, 61–68. [Google Scholar] [CrossRef]
- Ali, A.T.; Maryam, W.; Huang, Y.-W.; Hsu, H.C.; Ahmed, N.M.; Zainal, N.; Jameel, M.S. SiO2 Capped-ZnO Nanorods for Enhanced Random Laser Emission. Opt. Laser Technol. 2022, 147, 107633. [Google Scholar] [CrossRef]
- Xu, C.; Qin, F.; Zhu, Q.; Lu, J.; Wang, Y.; Li, J.; Lin, Y.; Cui, Q.; Shi, Z.; Manohari, A.G. Plasmon-Enhanced ZnO Whispering-Gallery Mode Lasing. Nano Res. 2018, 11, 3050–3064. [Google Scholar] [CrossRef]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Kattel, S.; Ramírez, P.J.; Chen, J.G.; Rodriguez, J.A.; Liu, P. Active Sites for CO2 Hydrogenation to Methanol on Cu/ZnO Catalysts. Science 2017, 355, 1296–1299. [Google Scholar] [CrossRef] [Green Version]
- Qi, K.; Cheng, B.; Yu, J.; Ho, W. Review on the Improvement of the Photocatalytic and Antibacterial Activities of ZnO. J. Alloy. Compd. 2017, 727, 792–820. [Google Scholar] [CrossRef]
- Wang, C.-N.; Li, Y.-L.; Gong, F.-L.; Zhang, Y.-H.; Fang, S.-M.; Zhang, H.-L. Advances in Doped ZnO Nanostructures for Gas Sensor. Chem. Rec. 2020, 20, 1553–1567. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, S.; Umar, A.; Bhasin, K.K.; Baskoutas, S. Chemical Sensing Applications of ZnO Nanomaterials. Materials 2018, 11, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, L.; Zeng, W. Room-Temperature Gas Sensing of ZnO-Based Gas Sensor: A Review. Sens. Actuators A Phys. 2017, 267, 242–261. [Google Scholar] [CrossRef]
- Sanchez-Valencia, J.R.; Alcaire, M.; Romero-Gómez, P.; Macias-Montero, M.; Aparicio, F.J.; Borras, A.; Gonzalez-Elipe, A.R.; Barranco, A. Oxygen Optical Sensing in Gas and Liquids with Nanostructured ZnO Thin Films Based on Exciton Emission Detection. J. Phys. Chem. C 2014, 118, 9852–9859. [Google Scholar] [CrossRef]
- Cretì, A.; Valerini, D.; Taurino, A.; Quaranta, F.; Lomascolo, M.; Rella, R. Photoluminescence Quenching Processes by NO2 Adsorption in ZnO Nanostructured Films. J. Appl. Phys. 2012, 111, 073520. [Google Scholar] [CrossRef]
- Setaro, A.; Bismuto, A.; Lettieri, S.; Maddalena, P.; Comini, E.; Bianchi, S.; Baratto, C.; Sberveglieri, G. Optical Sensing of NO2 in Tin Oxide Nanowires at Sub-Ppm Level. Sens. Actuators B Chem. 2008, 130, 391–395. [Google Scholar] [CrossRef]
- Meyer, B.K.; Alves, H.; Hofmann, D.M.; Kriegseis, W.; Forster, D.; Bertram, F.; Christen, J.; Hoffmann, A.; Straßburg, M.; Dworzak, M.; et al. Bound Exciton and Donor–Acceptor Pair Recombinations in ZnO. Phys. Stat. Sol. 2004, 241, 231–260. [Google Scholar] [CrossRef]
- Bagnall, D.M.; Chen, Y.F.; Zhu, Z.; Yao, T.; Shen, M.Y.; Goto, T. High Temperature Excitonic Stimulated Emission from ZnO Epitaxial Layers. Appl. Phys. Lett. 1998, 73, 1038–1040. [Google Scholar] [CrossRef]
- Mitsubori, S.; Katayama, I.; Lee, S.H.; Yao, T.; Takeda, J. Ultrafast Lasing Due to Electron–Hole Plasma in ZnO Nano-Multipods. J. Phys. Condens. Matter 2009, 21, 064211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.G.; Fujita, S.; Kawaharamura, T.; Nishinaka, H.; Kamada, Y.; Ohshima, T.; Ye, Z.Z.; Zeng, Y.J.; Zhang, Y.Z.; Zhu, L.P.; et al. Carrier Concentration Dependence of Band Gap Shift in N-Type ZnO:Al Films. J. Appl. Phys. 2007, 101, 083705. [Google Scholar] [CrossRef]
- Schmid, P.E. Optical Absorption in Heavily Doped Silicon. Phys. Rev. B 1981, 23, 5531–5536. [Google Scholar] [CrossRef]
- Muth, J.F.; Kolbas, R.M.; Sharma, A.K.; Oktyabrsky, S.; Narayan, J. Excitonic Structure and Absorption Coefficient Measurements of ZnO Single Crystal Epitaxial Films Deposited by Pulsed Laser Deposition. J. Appl. Phys. 1999, 85, 7884–7887. [Google Scholar] [CrossRef]
- Liang, W.Y.; Yoffe, A.D. Transmission Spectra of ZnO Single Crystals. Phys. Rev. Lett. 1968, 20, 59–62. [Google Scholar] [CrossRef]
- Srikant, V.; Clarke, D.R. On the Optical Band Gap of Zinc Oxide. J. Appl. Phys. 1998, 83, 5447. [Google Scholar] [CrossRef]
- Stern, F. Calculated Spectral Dependence of Gain in Excited GaAs. J. Appl. Phys. 1976, 47, 5382–5386. [Google Scholar] [CrossRef]
- Casey, H.C.; Stern, F. Concentration-dependent Absorption and Spontaneous Emission of Heavily Doped GaAs. J. Appl. Phys. 1976, 47, 631–643. [Google Scholar] [CrossRef]
- Bishop, P.J.; Daniels, M.E.; Ridley, B.K.; Woodbridge, K. Radiative Recombination in GaAs/AlGaAs Quantum Wells. Phys. Rev. B 1992, 45, 6686–6691. [Google Scholar] [CrossRef] [PubMed]
Sample 1 | Sample 2 | |
---|---|---|
(ns) | 0.33 ± 0.04 | 0.32 ± 0.04 |
(cm3 s−1) | (3.0 ± 0.3) × 10−11 | (2.2 ± 0.3) × 10−11 |
(cm−3) | (1.3 ± 0.6) × 1019 | (3 ± 1) × 1019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santamaria, L.; Maddalena, P.; Lettieri, S. An Instantaneous Recombination Rate Method for the Analysis of Interband Recombination Processes in ZnO Crystals. Materials 2022, 15, 1515. https://doi.org/10.3390/ma15041515
Santamaria L, Maddalena P, Lettieri S. An Instantaneous Recombination Rate Method for the Analysis of Interband Recombination Processes in ZnO Crystals. Materials. 2022; 15(4):1515. https://doi.org/10.3390/ma15041515
Chicago/Turabian StyleSantamaria, Luigi, Pasqualino Maddalena, and Stefano Lettieri. 2022. "An Instantaneous Recombination Rate Method for the Analysis of Interband Recombination Processes in ZnO Crystals" Materials 15, no. 4: 1515. https://doi.org/10.3390/ma15041515
APA StyleSantamaria, L., Maddalena, P., & Lettieri, S. (2022). An Instantaneous Recombination Rate Method for the Analysis of Interband Recombination Processes in ZnO Crystals. Materials, 15(4), 1515. https://doi.org/10.3390/ma15041515