Research Progress of Wood Cell Wall Modification and Functional Improvement: A Review
Abstract
:1. Introduction
2. Thermal Modification on Wood Cell Walls
2.1. Steam Thermal Modification
2.2. Vacuum Thermal Modification after Glycerin Pretreatment
2.3. Impregnation Combined with Thermal Modification
2.4. Thermo-Hydro and Thermo-Hydro-Mechanical Process
2.5. Laser Surface Thermal Modification
3. Chemical Modification on Wood Cell Walls
3.1. Acetylation
3.2. Other Chemical Modification
3.3. More on Modifications of Pores in Wood Cell Walls
3.4. Flame Retardant Treatment
3.5. Chemical Mineralization of Wood
4. Other Innovative Modifications
4.1. Wood Carbonization Caused by Thermal Modification
4.2. Aerogel-Based Woodmatrix Composites
4.3. Hydrogel-Based Woodmatrix Composites
4.4. Transparent Wood
4.5. Acoustic Performance
5. Nanotechnology
6. Conclusions and Prospects
- (1)
- The research on traditional modification of TM, acetylation, and furfuralization should pay more attrition to the modifier innovation and combination of modifier and modification mechanisms. The permeability of wood is critical for modifiers penetrating; therefore, novel permeability improvement theory and technology should be developed in future research.
- (2)
- Wood sponge, transparent wood, and energy storage materials are developed based on the modification to the wood cell wall and its structures. Future work should focus on the directional modification to the cell walls due to the particular anisotropic characteristic, the longitudinal, tangential, and radial mechanical properties of the cell wall can be individually enhanced to meet some special applications.
- (3)
- Nanotechnology has been used in wood modification and provides more ideas for cell wall modification. Nanotechnology can not only be applied to modifiers to provide new ideas for solving the problem of cell wall permeability, but it can also be applied to cell wall structures. It is of great significance to study the cross-linking process of modifiers in cell walls from the nanoscale. The modification mechanism of nano-modifier particles, the distribution within the cell wall, and the nanostructure of the cell wall should be the key directions in future research.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, W.; Liu, N. Numerical and optimal study on bending moment capacity and stiffness of mortise-and-tenon joint for wood products. Forests 2020, 11, 501. [Google Scholar] [CrossRef]
- Zhou, L.; Fu, Y.C. Flame-retardant wood composites based on immobilizing with Chitosan/Sodium Phytate/Nano-TiO2-ZnO coatings via layer-by-layer self-assembly. Coatings 2020, 10, 296. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.Y.; Huang, Y.J.; Fu, H.Y.; Wang, Y.L.; Wang, Z.; Sayed, U. Deflection test and modal analysis of lightweight timber floors. J. Bioresour. Bioprod. 2021, 6, 266–278. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.H.; Dong, H.R.; Fu, S.; Ma, L.; Yang, X.J. Wood Plastic Composites Based Wood Wall’s Structure and Thermal Insulation Performance. J. Bioresour. Bioprod. 2021, 6, 65–74. [Google Scholar]
- Yang, L. Effect of temperature and pressure of supercritical CO2 on dewatering, shrinkage and stresses of Eucalyptus Wood. Appl. Sci. 2021, 11, 8730. [Google Scholar] [CrossRef]
- Spear, M.; Curling, S.; Dimitriou, A.; Ormondroyd, G. Review of Functional Treatments for Modified Wood. Coatings 2021, 11, 327. [Google Scholar] [CrossRef]
- Qing, Y.; Liao, Y.; Liu, J.Y.; Tian, C.H.; Xu, H.; Wu, Y.Q. Research progress of wood-derived energy storage materials. J. For. Eng. 2021, 6, 1–13. [Google Scholar] [CrossRef]
- Zhao, Y.; Xue, X.; Song, X.; Nan, C.; Chen, R.; Wang, Y. Comparison and analysis of FT-IR spectra for six broad-leaved wood species. J. For. Eng. 2019, 4, 40–45. [Google Scholar]
- Gan, W. Bionic Construction of Wood-Based Magnetic Materials and Their Functions. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2019. [Google Scholar]
- Minkah, M.A.; Afrifah, K.A.; Antwi-Boasiako, C.; Wentzel, M.; Batista, D.C.; Militz, H. Physical and moisture sorption properties of thermally-modified Gmelina arborea wood. Pro Ligno 2021, 17, 3–12. [Google Scholar]
- Dong, M.Y.; Zhang, S.F.; Li, J.Z. Research progress in wood cell wall modification. J. For. Eng. 2017, 2, 34–39. [Google Scholar]
- Lin, Y.; Tianqi, H.; Yudong, F. Effect of Heat Treatment and Wax Impregnation on Dimensional Stability of Pterocarpus Macrocarpus wood. Wood Res. 2020, 65, 963–974. [Google Scholar]
- Lin, Y.; Tianqi, H.; Yunxia, L.; Qin, Y. Effects of Vacuum Heat Treatment and Wax Impregnation on the Color of Pterocarpus macrocarpus Kurz. Bioresources 2021, 16, 954–963. [Google Scholar]
- Yang, L.; Jin, H.H. Effect of heat treatment on the physic-mechanical characteristics of Eucalyptus urophylla S.T. Blake. Materials 2021, 14, 6643. [Google Scholar] [CrossRef]
- Sivrikaya, H.; Tesařová, D.; Jeřábková, E.; Can, A. Color change and emission of volatile organic compounds from Scots pine exposed to heat and vacuum-heat treatment. J. Build. Eng. 2019, 26, 100918. [Google Scholar] [CrossRef]
- Esteves, B.; Pereira, H. Wood modification by heat treatment: A review. Bioresources 2009, 4, 370–404. [Google Scholar] [CrossRef]
- Wang, J.; Minami, E.; Kawamoto, H. Thermal reactivity of hemicellulose and cellulose in cedar and beech wood cell walls. J. Wood Sci. 2020, 66, 41. [Google Scholar] [CrossRef]
- Xi, E. Dynamic relationship between mechanical properties and chemical compo sition distribution of wood cell walls. Wood Res. 2018, 63, 179–192. [Google Scholar]
- Bourgois, J.; Bartholin, M.-C.; Guyonnet, R. Thermal treatment of wood: Analysis of the obtained product. Wood Sci. Technol. 1989, 23, 303–310. [Google Scholar] [CrossRef]
- Tian, M.; Zhang, B.; Wu, Z.; Yu, L.; Li, L.; Xi, X. Effects of Steam Heat-Treatment on Properties of Pinus massoniana Wood and Its Bonding Performance. J. Renew. Mater. 2021, 9, 789–801. [Google Scholar] [CrossRef]
- Cao, Y.; Lu, J.; Huang, R.; Jiang, J. Increased dimensional stability of Chinese fir through steam-heat treatment. Eur. J. Wood Wood Prod. 2011, 70, 441–444. [Google Scholar] [CrossRef]
- Xiang, E.; Huang, R.; Yang, S. Change in Micromechanical Behavior of Surface Densified Wood Cell Walls in Response to Superheated Steam Treatment. Forests 2021, 12, 693. [Google Scholar] [CrossRef]
- Bytner, O.; Drożdżek, M.; Laskowska, A.; Zawadzki, J. Temperature, Time, and Interactions between Them in Relation to Colour Parameters of Black Poplar (Populus nigra L.) Thermally Modified in Nitrogen Atmosphere. Materials 2022, 15, 824. [Google Scholar] [CrossRef]
- Wang, J.; Cooper, P. Effect of oil type, temperature and time on moisture properties of hot oil-treated wood. Holz Als Roh-Und Werkst. 2005, 63, 417–422. [Google Scholar] [CrossRef]
- Sivrikaya, H.; Hosseinpourpia, R.; Ahmed, S.A.; Adamopoulos, S. Vacuum-heat treatment of Scots pine (Pinus sylvestris L.) wood pretreated with propanetriol. Wood Mater. Sci. Eng. 2020, 16, 1–9. [Google Scholar] [CrossRef]
- Roussel, C.; Marchetti, V.; Lemor, A.; Wozniak, E.; Loubinoux, B.; Gérardin, P. Chemical modification of wood by polyglycerol/maleic anhydride treatment. Wood Res. Technol. 2001, 55, 57–62. [Google Scholar] [CrossRef]
- Huang, Y.; Li, G.; Chu, F. In situ polymerization of 2-hydroxyethyl methacrylate (HEMA) and 3-(methacryloxy) propyltrimethoxysilane (MAPTES) in poplar cell wall to enhance its dimensional stability. Holzforschung 2019, 73, 469–474. [Google Scholar] [CrossRef]
- Zhang, R.; Ma, E. Improving dimensional stability of Populus cathayana wood by suberin monomers with heat treatment. iForest 2021, 14, 313. [Google Scholar] [CrossRef]
- Brosse, N.; El Hage, R.; Chaouch, M.; Pétrissans, M.; Dumarçay, S.; Gérardin, P. Investigation of the chemical modifications of beech wood lignin during heat treatment. Polym. Degrad. Stab. 2010, 95, 1721–1726. [Google Scholar] [CrossRef]
- Williams, R.; Feist, W. Application of ESCA to evaluate wood and cellulose surfaces modified by aqueous chromium trioxide treatment. Colloids Surf. 1984, 9, 253–271. [Google Scholar] [CrossRef]
- Huang, X.; Kocaefe, D.; Kocaefe, Y.; Boluk, Y.; Krause, C. Structural analysis of heat-treated birch (Betule papyrifera) surface during artificial weathering. Appl. Surf. Sci. 2013, 264, 117–127. [Google Scholar] [CrossRef]
- Shen, H.; Zhang, S.; Cao, J.; Jiang, J.; Wang, W. Improving anti-weathering performance of thermally modified wood by TiO2 sol or/and paraffin emulsion. Constr. Build. Mater. 2018, 169, 372–378. [Google Scholar] [CrossRef]
- Lin, X.; Wang, L.C.; Xu, M. Effect of Combined Thermal Modification of Polyethylene Glycol on the Properties of Rubber Wood. J. Northeast For. Univ. 2021, 49, 106–110, 116. [Google Scholar]
- Jeremic, D.; Cooper, P.; Heyd, D. PEG bulking of wood cell walls as affected by moisture content and nature of solvent. Wood Sci. Technol. 2007, 41, 597. [Google Scholar] [CrossRef]
- Tu, D.Y.; Chen, C.F.; Zhou, Q.F.; Ou, R.X.; Wang, X.J. Research progress of thermo-mechanical compression techniques for wood products. J. For. Eng. 2021, 6, 13–20. [Google Scholar] [CrossRef]
- Tenorio, C.; Moya, R. Effect of thermo-hydro-mechanical densification on the wood properties of three short-rotation forest species in Costa Rica. Bioresources 2020, 15, 8065. [Google Scholar] [CrossRef]
- Balasso, M.; Kutnar, A.; Niemelä, E.P.; Mikuljan, M.; Nolan, G.; Kotlarewski, N.; Hunt, M.; Jacobs, A.; O’Reilly-Wapstra, J. Wood properties characterisation of thermo-hydro mechanical treated plantation and native tasmanian timber species. Forests 2020, 11, 1189. [Google Scholar] [CrossRef]
- Wang, X.; Tu, D.; Chen, C.; Zhou, Q.; Huang, H.; Zheng, Z.; Zhu, Z. A thermal modification technique combining bulk densification and heat treatment for poplar wood with low moisture content. Constr. Build. Mater. 2021, 291, 123395. [Google Scholar] [CrossRef]
- Li, R.; Xu, W.; Wang, X.; Wang, C. Modeling and predicting of the color changes of wood surface during CO2 laser modification. J. Clean. Prod. 2018, 183, 818–823. [Google Scholar] [CrossRef]
- Fukuta, S.; Nomura, M.; Ikeda, T.; Yoshizawa, M.; Yamasaki, M.; Sasaki, Y. Wavelength dependence of machining performance in UV-, VIS-and NIR-laser cutting of wood. J. Wood Sci. 2016, 62, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Li, R.R.; He, C.J.; Chen, Y.J.; Meng, F. Research progress on laser surface treatment of wood materials. J. For. Eng. 2021, 6, 31–39. [Google Scholar]
- Rowell, R.M. Chemical modification of wood: A short review. Wood Mater. Sci. Eng. 2006, 1, 29–33. [Google Scholar] [CrossRef]
- Dong, Y.; Altgen, M.; Mäkelä, M.; Rautkari, L.; Hughes, M.; Li, J.; Zhang, S. Improvement of interfacial interaction in impregnated wood via grafting methyl methacrylate onto wood cell walls. Holzforschung 2020, 74, 967–977. [Google Scholar] [CrossRef]
- Xu, E.; Wang, D.; Lin, L. Chemical structure and mechanical properties of wood cell walls treated with acid and alkali solution. Forests 2020, 11, 87. [Google Scholar] [CrossRef] [Green Version]
- Digaitis, R.; Thybring, E.E.; Thygesen, L.G.; Fredriksson, M. Targeted acetylation of wood: A tool for tuning wood-water interactions. Cellulose 2021, 28, 8009–8025. [Google Scholar] [CrossRef]
- Thygesen, L.G.; Beck, G.; Nagy, N.E.; Alfredsen, G. Cell wall changes during brown rot degradation of furfurylated and acetylated wood. Int. Biodeterior. Biodegrad. 2021, 162, 105257. [Google Scholar] [CrossRef]
- Yang, R.; Wang, S.; Zhou, D.; Zhang, J.; Lan, P.; Jia, C. Construction of Hydrophobic Wood Surface and Mechanical Property of Wood Cell Wall on Nanoscale Modified by Dimethyldichlorosilane. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 301, p. 012051. [Google Scholar]
- Schirp, A.; Ibach, R.E.; Pendleton, D.E.; Wolcott, M.P. Biological degradation of wood-plastic composites (WPC) and strategies for improving the resistance of WPC against biological decay. In Development of Commercial Wood Preservatives: Efficacy, Environmental, and Health Issues; ACS Symposium Series; American Chemical Society: Washington, DC, USA; Oxford University Press: Oxford, UK, 2008; pp. 480–507. ISBN 9780841239517. [Google Scholar]
- Wang, K.; Dong, Y.; Yan, Y.; Zhang, S.; Li, J. Improving dimensional stability and durability of wood polymer composites by grafting polystyrene onto wood cell walls. Polym. Compos. 2018, 39, 119–125. [Google Scholar] [CrossRef]
- Guo, D.; Shen, X.; Fu, F.; Yang, S.; Li, G.; Chu, F. Improving physical properties of wood–polymer composites by building stable interface structure between swelled cell walls and hydrophobic polymer. Wood Sci. Technol. 2021, 55, 1401–1417. [Google Scholar] [CrossRef]
- Ding, L.; Han, X.; Jiang, S. Impregnation of poplar wood with multi-functional composite modifier and induction of in-situ polymerization by heating. J. Wood Chem. Technol. 2021, 41, 220–228. [Google Scholar] [CrossRef]
- Kohlmayr, M.; Stultschnik, J.; Teischinger, A.; Kandelbauer, A. Drying and curing behaviour of melamine formaldehyde resin impregnated papers. J. Appl. Polym. Sci. 2014, 5, 131. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Z. Time domain-NMR studies of average pore size of wood cell walls during drying and moisture adsorption. Wood Sci. Technol. 2020, 54, 1241–1251. [Google Scholar] [CrossRef]
- He, M.; Xu, D.; Li, C.; Ma, Y.; Dai, X.; Pan, X.; Fan, J.; He, Z.; Gui, S.; Dong, X. Cell wall bulking by maleic anhydride for wood durability improvement. Forests 2020, 11, 367. [Google Scholar] [CrossRef] [Green Version]
- Noël, M.; Grigsby, W.J.; Volkmer, T. Evaluating the extent of bio-polyester polymerization in solid wood by thermogravimetric analysis. J. Wood Chem. Technol. 2015, 35, 325–336. [Google Scholar] [CrossRef]
- Noël, M.; Grigsby, W.; Vitkeviciute, I.; Volkmer, T. Modifying wood with bio-polyesters: Analysis and performance. Int. Wood Prod. J. 2015, 6, 14–20. [Google Scholar] [CrossRef]
- Sandberg, D.; Kutnar, A. Thermally modified timber: Recent developments in Europe and North America. Wood Fiber Sci. 2016, 48, 28–39. [Google Scholar]
- Ma, J.; Kim, J.-H.; Na, J.; Min, J.; Lee, G.H.; Jo, S.; Kim, C.S. Enhanced Polymerization and Surface Hardness of Colloidal Siloxane Films via Electron Beam Irradiation. ACS Omega 2021, 6, 13384–13390. [Google Scholar] [CrossRef]
- Hadi, Y.S.; Mulyosari, D.; Herliyana, E.N.; Pari, G.; Arsyad, W.O.M.; Abdillah, I.B.; Gérardin, P. Furfurylation of wood from fast-growing tropical species to enhance their resistance to subterranean termite. Eur. J. Wood Wood Prod. 2021, 79, 1007–1015. [Google Scholar] [CrossRef]
- Liu, M.; Guo, F.; Wang, H.; Ren, W.; Cao, M.; Yu, Y. Highly stable wood material with low resin consumption via vapor phase furfurylation in cell walls. ACS Sustain. Chem. Eng. 2020, 8, 13924–13933. [Google Scholar] [CrossRef]
- Guo, W. Study on the Mechanisms of Glucose Activation and Wood Cell Wall Modification with Activated Glucose. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2019. [Google Scholar]
- Ermeydan, M.A. Modification of spruce wood by UV-crosslinked PEG hydrogels inside wood cell walls. React. Funct. Polym. 2018, 131, 100–106. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, L.; Deng, Y.; Li, Y.; Wang, S. Effect of the penetration of isocyanates (pMDI) on the nanomechanics of wood cell wall evaluated by AFM-IR and nanoindentation (NI). Holzforschung 2018, 72, 301–309. [Google Scholar] [CrossRef]
- Tang, Q.H.; Fang, L.; Guo, W.J. Effect of the mixture ratio of MPP/ADP composites flame retardant on the properties of bamboo/polypropylene composites. J. For. Eng. 2020, 5, 87–92. [Google Scholar]
- Lee, H.L.; Chen, G.C.; Rowell, R.M. Thermal properties of wood reacted with a phosphorus pentoxide–amine system. J. Appl. Polym. Sci. 2004, 91, 2465–2481. [Google Scholar] [CrossRef]
- Russell, L.; Marney, D.; Humphrey, D.; Hunt, A.; Dowling, V.; Cookson, L. Combining Fire Retardant and Preservative Systems for Timber Products in Exposed Applications-State of the Art Review; Forest and Wood Products Research and Development Corporation: Melbourne, Australia, 2007. [Google Scholar]
- Hom, S.K.; Ganguly, S.; Samani, A.; Tripathi, S. Improvement in fire retardancy with double-step chemical modification on Pinus radiata D. Don using dimethyl methylphosphonate with propylene oxide and maleic anhydride. Int. Wood Prod. J. 2020, 11, 138–145. [Google Scholar] [CrossRef]
- MacDonald, M.; Gouldin, F.; Fisher, E. Temperature dependence of phosphorus-based flame inhibition. Combust. Flame 2001, 124, 668–683. [Google Scholar] [CrossRef]
- Lewin, M. Flame retarding of wood by chemical modification with bromate-bromide solutions. J. Fire Sci. 1997, 15, 29–51. [Google Scholar] [CrossRef]
- Selmeier, A. Anatomische Untersuchungen an verkieselten Hölzern. Holz Als Roh-Und Werkst. 1990, 48, 111–115. [Google Scholar] [CrossRef]
- Hill, C.A. Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Doubek, S.; Borůvka, V.; Zeidler, A.; Reinprecht, L. Effect of the passive chemical modification of wood with silicon dioxide (silica) on its properties and inhibition of moulds. Wood Res. 2018, 63, 599–616. [Google Scholar]
- Furuno, T.; Watanabe, T.; Suzuki, N.; Goto, T.; Yokoyama, K. Microstructure and silica mineralization in the formation of silicified woods. I: Species identification of silicified woods and observations with a scanning electron microscope. Mokuzai Gakkaishi 1986, 32, 387–400. [Google Scholar]
- Xu, D.; Ding, T.; Li, Y.; Zhang, Y.; Zhou, D.; Wang, S. Transition characteristics of a carbonized wood cell wall investigated by scanning thermal microscopy (SThM). Wood Sci. Technol. 2017, 51, 831–843. [Google Scholar] [CrossRef]
- Sun, D.L.; Ji, X.Q.; Wang, Z.H.; Sun, Z.Y.; Zhu, Z.H. Research progress and development trends of woodceramics. J. For. Eng. 2020, 5, 1–10. [Google Scholar]
- Okabe, T.; Kakishita, K.; Simizu, H.; Ogawa, K.; Nishimoto, Y.; Takasaki, A.; Suda, T.; Fushitani, M.; Togawa, H.; Sato, M.; et al. Current Status and Application of Woodceramics Made from Biomass. Trans. Mater. Res. Soc. Jpn. 2013, 38, 191–194. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lin, X.; Liu, T.; Chen, H.; Chen, S.; Jiang, Z.-J.; Liu, J.; Huang, J.; Liu, M. Wood-Derived Hierarchically Porous Electrodes for High-Performance All-Solid-State Supercapacitors. Adv. Funct. Mater. 2018, 28, 1806207. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, W.; Wang, C.; Li, Y.; Chen, C.; Song, J.; Dai, J.; Hitz, E.M.; Xu, S.; Yang, C.; et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proc. Natl. Acad. Sci. USA 2017, 114, 3584–3589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Zhang, Y.; Li, Y.; Kuang, Y.; Song, J.; Luo, W.; Wang, Y.; Yao, Y.; Pastel, G.; Xie, J. Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors. Adv. Energy Mater. 2017, 7, 1700595. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Guo, H. Research Progress of Wood-based Electrochemical Energy Storage Devices. Mater. Rev. 2020, 34, 23001–23008. [Google Scholar]
- Suzuki, K.; Saito, Y.; Kita, H.; Sato, K.; Konno, T.; Suzuki, T. Production of carbon nanoshell chains by the Co-catalyzed carbonization of wood. Tanso 2017, 2017, 55–62. [Google Scholar] [CrossRef]
- Li, X.; Tabil, L.G.; Panigrahi, S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. J. Polym. Environ. 2007, 15, 25–33. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Y.Y. Research Progress of Aerogel-Type Balsa Wood-based Composites. Mater. Rev. 2022, 15, 1–14. [Google Scholar]
- Wu, Y.; Cai, Y.; Yang, F. Research Progress in Wood Sponges. World For. Res. 2021, 34, 76–80. [Google Scholar]
- Wang, Z.; Lin, S.; Li, X.; Zou, H.; Zhuo, B.; Ti, P.; Yuan, Q. Optimization and absorption performance of wood sponge. J. Mater. Sci. 2021, 56, 8479–8496. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, L.; Lai, X.; Li, H.; Zeng, X. Highly hydrophobic F-rGO@ wood sponge for efficient clean-up of viscous crude oil. Chem. Eng. J. 2020, 386, 123994. [Google Scholar] [CrossRef]
- Wang, S.; Li, K.; Zhou, Q. High strength and low swelling composite hydrogels from gelatin and delignified wood. Sci. Rep. 2020, 10, 17842. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, J.; Huang, Q.; Yang, F.; Wang, Y.; Liang, X.; Li, J. Study on the colorimetry properties of transparent wood prepared from six wood species. ACS Omega 2020, 5, 1782–1788. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhou, J.; Yang, F.; Wang, Y.; Zhang, J. A strong multilayered transparent wood with natural wood color and texture. J. Mater. Sci. 2021, 56, 8000–8013. [Google Scholar] [CrossRef]
- Nishiyama, Y.H. Retrieving Structural Information from Scattering and Attenuation Data of Transparent Wood and (Nano)paper. J. Bioresour. Bioprod. 2021, 6, 187–194. [Google Scholar]
- Li, Y.; Yang, X.; Fu, Q.; Rojas, R.; Yan, M.; Berglund, L. Towards centimeter thick transparent wood through interface manipulation. J. Mater. Chem. A 2018, 6, 1094–1101. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Song, J.; Li, T.; Gong, A.; Wang, Y.; Dai, J.; Yao, Y.; Luo, W.; Henderson, D.; Hu, L. Highly anisotropic, highly transparent wood composites. Adv. Mater. 2016, 28, 5181–5187. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Baitenov, A.; Li, Y.; Vasileva, E.; Popov, S.; Sychugov, I.; Yan, M.; Berglund, L. Thickness dependence of optical transmittance of transparent wood: Chemical modification effects. ACS Appl. Mater. Interfaces 2019, 11, 35451–35457. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Peng, L.; Zhu, G.; Fu, F.; Zhou, Y.; Song, B. Improving the sound absorption capacity of wood by microwave treatment. Bioresources 2014, 9, 7504–7518. [Google Scholar] [CrossRef] [Green Version]
- Kang, C.W.; Li, C.; Jang, E.-S.; Jang, S.-S.; Kang, H.-Y. Changes in sound absorption capability and air permeability of Malas (Homalium foetidum) specimens after high temperature heat treatment. J. Korean Wood Sci. Technol. 2018, 46, 149–154. [Google Scholar] [CrossRef]
- Liu, W.J.; Zhang, Y.J. Effects of Pore Structure in Cell Wall on Wood Properties and Processing Utilization. World For. Res. 2021, 34, 44–48. [Google Scholar]
- Yin, J.; Song, K.; Lu, Y.; Zhao, G.; Yin, Y. Comparison of changes in micropores and mesopores in the wood cell walls of sapwood and heartwood. Wood Sci. Technol. 2015, 49, 987–1001. [Google Scholar] [CrossRef]
- Shi, J.; Li, J.; Zhou, W.; Zhang, D. Improvement of wood properties by urea-formaldehyde resin and nano-SiO2. Front. For. China 2007, 2, 104–109. [Google Scholar] [CrossRef]
- Mahr, M.S.; Hübert, T.; Sabel, M.; Schartel, B.; Bahr, H.; Militz, H. Fire retardancy of sol–gel derived titania wood-inorganic composites. J. Mater. Sci. 2012, 47, 6849–6861. [Google Scholar] [CrossRef]
- Furuno, T.; Goto, T. The role of polymer in the cell wall on the dimensional stability of wood-polymer composite (WPC). J. Jpn. Wood Res. Soc. 1978, 24, 287–293. [Google Scholar]
- Furuno, T.; Goto, T. Structure of the interface between wood and synthetic polymer. XII. Distribution of styrene polymer in the cell wall of wood-polymer composite (WPC) and dimensional stability [1979]. J. Jpn. Wood Res. Soc. 2013, 25, 488–495. [Google Scholar]
- Kajita, H.; Imamura, Y. Improvement of physical and biological properties of particleboards by impregnation with phenolic resin. Wood Sci. Technol. 1991, 26, 63–70. [Google Scholar] [CrossRef]
- Burgert, I.; Cabane, E.; Zollfrank, C.; Berglund, L. Bio-inspired functional wood-based materials–hybrids and replicates. Int. Mater. Rev. 2015, 60, 431–450. [Google Scholar] [CrossRef]
- Harandi, D.; Ahmadi, H.; Achachluei, M.M. Comparison of TiO2 and ZnO nanoparticles for the improvement of consolidated wood with polyvinyl butyral against white rot. Int. Biodeterior. Biodegrad. 2016, 108, 142–148. [Google Scholar] [CrossRef]
- Hazarika, A.; Maji, T.K. Synergistic effect of nano-TiO2 and nanoclay on the ultraviolet degradation and physical properties of wood polymer nanocomposites. Ind. Eng. Chem. Res. 2013, 52, 13536–13546. [Google Scholar] [CrossRef]
- Garskaite, E.; Karlsson, O.; Stankeviciute, Z.; Kareiva, A.; Jones, D.; Sandberg, D. Surface hardness and flammability of Na2SiO3 and nano-TiO2 reinforced wood composites. RSC Adv. 2019, 9, 27973–27986. [Google Scholar] [CrossRef] [Green Version]
- Rassam, G.; Abdi, Y.; Abdi, A. Deposition of TiO2 nano-particles on wood surfaces for UV and moisture protection. J. Exp. Nanosci. 2012, 7, 468–476. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, T.; Liu, H. Research Progress of Wood Cell Wall Modification and Functional Improvement: A Review. Materials 2022, 15, 1598. https://doi.org/10.3390/ma15041598
Zhou T, Liu H. Research Progress of Wood Cell Wall Modification and Functional Improvement: A Review. Materials. 2022; 15(4):1598. https://doi.org/10.3390/ma15041598
Chicago/Turabian StyleZhou, Ting, and Honghai Liu. 2022. "Research Progress of Wood Cell Wall Modification and Functional Improvement: A Review" Materials 15, no. 4: 1598. https://doi.org/10.3390/ma15041598
APA StyleZhou, T., & Liu, H. (2022). Research Progress of Wood Cell Wall Modification and Functional Improvement: A Review. Materials, 15(4), 1598. https://doi.org/10.3390/ma15041598